65C816 Data Sheet is received after an ABORT which occurs during the WAI instruction, the processor will return to the WAI instruction. Other than RES (highest priority), ABORT is the next highest priority, followed by NMI or IRQ ## **STP Instruction** The STP instruction disables the $\phi2$ clock to all circuitry. When disabled, the $\phi 2$ clock is held in the high state. In this case, the Data Bus will remain in the data transfer state and the Bank address will not be multiplexed onto the Data Bus. Upon executing the STP instruction, the RES signal is the only input which can restart the processor. The processor is restarted by enabling the $\phi2$ clock, which occurs on the falling edge of the RES input. Note that the external oscillator must be stable and operating properly before RES goes high. Signatures 00-7F may be user defined, while signatures 80-FF are reserved for instructions on future microprocessors (i.e., W65C832). Contact WDC for software emulation of future microprocessor hardware functions. WDM Opcode Use The WDM opcode will be used on future microprocessors. For example, the new W65C832 uses this opcode to provide 32-bit floating-point and other 32-bit math and data operations. Note that the W65C832 will be a plug-to-plug replacement for the W65C816, and can be used where high-speed, 32-bit math processing is required. The W65C832 will be available in the near future. **RDY Pulled During Write** The NMOS 6502 does not stop during a write operation. In contrast, both the W65C02 and the W65C816 do stop during write operations. The W65C802 stops during a write when in the Native mode, but does not stop when in the Emulation mode. MVN and MVP Affects on the Data Bank Register The MVN and MVP instructions change the Data Bank Register to the value of the second byte of the instruction (destination bank address). The following interrupt priorities will be in effect should more than one interrupt occur at the same time: ABORT NMI ĪRQ **Highest Priority** Lowest Priority Transfers from 8-Bit to 16-Bit, or 16-Bit to 8-Bit Registers All transfers from one register to another will result in a full 16-bit output from the source register. The destination register size will determine the number of bits actually stored in the destination register and the values stored in the processor Status Register. The following are always 16-bit transfers, regardless of the accumulator size: TCS; TSC; TCD; TDC ## Stack Transfers When in the Emulation mode, a 01 is forced into SH. In this case, the B Accumulator will not be loaded into SH during a TCS instruction. When in the Native mode, the B Accumulator is transferred to SH. Note that in both the Emulation and Native modes, the full 16 bits of the Stack Register are transferred to the A, B and C Accumulators, regardless of the state of the M bit in the Status Register.