
and

just
run

with
boot

menu"

CRACK-SHOT

both flip
aa you will

WHAT 90X OF NEW OWNER"S NEED TO KNOW FIRST!

As a new proud ownereof the ultimate copy-deprotection
device, your first desir-e, undoubtedly, is to immediately
backup one of your impprtant programs. The new software
enclosed (Revision 3.1'and up)~ allows the neophite to do
this auomatically. (~LEASE NOTE: a language card or 16k Ram
card is needed for this process.) The rest of this large
manual is for the ather· lOX of the owners, those who are
experts in machine ~.n9uage, ~.nd want to do sophisticated

processing with thiS;~'iricredible card. For the majority of
you who wi 11 probabl y ,·~~er wa"t to take the ti me to d.velop
the eKpertise to "paclf'programs", this .ection i~ dedicated.

This is really a lo~ of fun, so relax and enjoy yourself
as we step you smoothly:through the procedures.

1> With the Appl e :i:urnecf.,OFF,insert ,your

card into any slotw;ittlin the Apple. Make'sure
switches are up. Leav. the cover off your Apple,
n~ed to get at those ~ltp switches later.
~', 2) ALWAYS, AL.WAYS put:a wri te protect tab on your
original disk

3) Boot up your prot.ect~d program.
4) After the program i. fully loaded (that is, past the

title page, introduc:.tions and "press any keys".tuff), then
flip the rear switch on the card.

5) A me.sage will appear acro.s the top of the screen:
)'COPYIN6- HIT AN¥ KEY". At this paint take· out your
protected originat~r6m the disk drive, and inser.t a blank
'disk. The blank does not have to be initalized.

6) Press any key, and the disk drive will whirl,
your program will be'saved out onto diskette. See~ that
took a few moment's and you already have a copy! Now to
the copy easi 1y. i" , .

7) Now turn'~ff ;vour Apple for about 10 seconds, and
,',~flip back up the rear swi tch on the CRACK,...sHOTcard.
'.'''.:- 8) Make a c,tip~of your CRACK-SHOT .aftware disk

Copya off your Appl~, Sysitem Master. Then insert and
this copied disk.;;:After tt)e :,inital messages, type "run
at the prompt. '" .•"} .

9) Choose OptiQn.,~. ,_~", :
10) Choose Opt~an 4,:which create. an initalized disk

with the proper ~oting~~Qfor~tion on ~it for, you. If you
only have one 'disk-drive, choose ,the reconfigure option

first on this .arQ'ein~liu.,';-;.. ,
11) Insert bl4"k d~skette into drive 2, and fOllow

directions. ," :: ,
12) Now, back at the's.me menu, choose Option 1, which

converts a CRACK-SHOT fi'-le(the one you' made a'few minutes
ago from your protect~ ~ master) into~a binary file in
position 1. Utilizing i:hi. te~hnique, two programs can be
stored on the .ame di.k. .,

13) You will be prompted for a file name to call this new
binary file. Usually 'you use the name of the program itself,
but to avoid confusion, you might want to name it "Red" or
"D4A7".

shows
These
most

14) Now for something a little tricky. The program
you a list of screen .etup. and ask you to choose one.
refer to the type of screen used by the program. For
hi-res programs, choose number 4- lHires2".

15) The disk drives will now turn on, and the binary file
with the appropriate startup file will be created on drive
2. Turn off the Apple when it is down, and reboot the new
disk.

16) Select file 1, and the program will boot and off you
go! "

When you are ready to put the second program on the same
disk, do all of the above steps again except for section 10,
and use the disk you already have in place of the blank disk
in section 11. Choose Option 2 in section 12, and when
finished, .you will now have a full disk. No other programs
can beadd~d to this one disk. Be sure to label the disk. It
certainly t. easy to forget what is on each one.

POSSI~I,.ETROUBLE SPOTS: .~.. ~~.5
. '. .;.... ~,.I

1) The most frequell~,.'::SPot·'is choosing the ric;ilft~creen
. for section *14. If you~ R~ogram comes up with a ~~~h:hi-res
.'screen, then go back~".r'\dredo section. 12-16. ~Thi. Ume
choess.,;Optron2- Hireli1;~~;fth:~tdcel5not work us~~pption 5
Hires1' +i, ;rel(t. Of cour;.••·.for:·a~,l.'text or 1o-res ,"programs
choose the appropriate ~\tons ...•.,';:f •. • ":

2) If the procedu~e bom~~ oUF:at sectlon 6, the~ you~.
wi11 need to remove .eme·or'a;L,i-f,ofthe extra cards, that }_
might :'beresiding in ydurf:Appl'el<'The D.C. Hayes Micromodem,
Z-SO card, Videl(eO-collimnc~rcf,'f~ndothers can .sometimes U
play havoc with the pr::.o~roPera~lon of the system. For a ..
few programs, even th_;16k ram ca'rdwi11 need to be,.taken
out until after section 6, then replaced during se~trpn 7 0_
whil'i!!the Apple is OFF. Never attempt to take out or put in ::
any card while the Apple is on! .,

3) There are occasions when 'the copy appears to be made
properly, but no matter what i. chosen for section 14, the ~
program d~es not run, or bombs .hortly after starting. This
is 'usually caused by the same ~a~ds mentioned already in
prev~ous section 2, and i. remed~.d by the same procedure
given.

There, tha~~. all there i. to it! Look Ma, NO PARMS!. If
you have any other questions,y.ou might well benefit from
our 24-hour, 7 day- a-week Hat.Line which is available to
all CRACK-SHO~ ~egi.t.red ow~.r' At a small additional f•••
For further information call Pir'.t.'sHarbor by modem. Have
fun and good luck!

· I ~. c .-
I.

i,·, ,_.

COPYRIGHT (C> 1982
PIRATES HARBOR

and
T.R.A.S.H. SYSTEMS

PIRATES
P.O. Box
Boston. MA
617-738-5051

HARBOR
8928

02114
MODEM

INDEX

1.0 INTRODUCTION •••••••••••••••••••••••••• 03

2.0 HOW TO MAKE A COPY ••••••••••••••••••••. O~

3.0 HOW TO RUN A COPY •••••••••••••••••••••• 07

4.0 MEMORY SETUP OF HARDWARE ••••••••••••••• 13

~.O EDIT UTILITY ••••••••••••••••••••••••••• 1~

6.0 PACKER UTILITY ••••••••••••••••••••••••• 19

7.0 COMMAND FILE CREATE •••••••••••••••••••• 39

8.0 EXTRA USES FOR CRACK-SHOT CARD •••••••••41

APPENDIX

A. HEX NUMBER SYSTEM •••••••••••••••••••••••• 4~

B. CRACK-SHOT TRACK REFERENCE ••••••••••••••• 47

C. ASSEMBLY LANBUABE REFERENCE •••••••••••••• 49

D. TIPS ON COPYINB AND PACKINB •••••••••••••• ~~

E. PACKING EXAMPLES.: ••••••••••••••••••••••• ~7

F. TROUBLE SHOOTINB ••••••••••••••••••••••••• 61

s. SCHEI'IATIC •••••••••••••••••••••••••••••••• 63

H. ADDITIONAL INFORMATION ••••••••••••••••••• 6~

1. PARAr1ETERS••••••••••••••••••••••••••••••• 67

Th. CRACK-SHOT c.rd i. gu.r.nt••d for 30d.y. .fter
purch•••• All p.rt•• nd l.bor .r. und.r w.rr.nty. If • problem
d.v.lop. in h.rdw.r. r.turn the c.rd to PIRATES HARBOR for
r.p.ir.

CRACK-SHOT COpy h•• b.en de.ign.d ••• g.ming tool,
progr.mm.r. .id, .nd ••• d.vic. to •••i.t you in obt.ining
l.g.l archiv.l copi•• of your program ••

CRACK-SHOT .hould NOT b. u••d for ill.g.l purpo••••
PIRATES HARBOR t.k. no r••pon.ibility for .ny Action.

tak.n by u••r. of thi. c.rd.

CRACK-SHOT

1.0 INTRODUCTION
================

CRACK-SHOT is a program backup system designed for quick
dependable archival backup of 'TOTAL LOAD' programs on the
APPLE II. A single drive system is the only requirement.

The term 'TOTAL LOAD' is used to describe all those
programs that, once booted from the original program disk
(protected), never need to access that disk again. If the
program needs to access a disk under normal DOS format it is
still possible. This term covers a majority of games and many
hobby and business programs. DOS disks can be formatted or
created uBing the normal DOS 3.3 or 3.2. If a program is
protected on a master disk but once running it uses normal DOS
then this can be copied using CRACK-SHOT. If the program uses
a nonstandard DOS but will initialize the disks for you then
this program is also viable for a CRACK-SHOT copy.

CRACK-SHOT does not copy the original disk. rather it
copies a program in memory at any time. To execute the
CRACK-SHOT copy of a program you need the CRACK-SHOT card or
supplied restart utilities. Due to the mechanism of storage
the new copied program on disk is in a very simple nonstandard
format. This in itself is no major problem to run from DOS 3.3
except for the fact that to make CRACK-SHOT totally effective
you need extra scratchpad memory. The extra memory i. so that
NO memory is changed at time of copy. Only three bytes are
changed by CRACK-SHOT at time of copy. This makes the
CRACK-SHOT system very dependable. CRACK-SHOT copies all 48k
ram in 15 seconds. Also copied to disk is the necessary
information for restart. To reload and execute the program you
need scratchpad memory and the program to reload and restart.
The CRACK-SHOT card contains both or a language card can be
used to restart.

Utilities are included to transfer your CRACK-SHOT disk
copies to smaller files on DDS 3.3 compatible disks. This
allows compaction of your copies and the ability to run copies
from DOS 3.3 without the CRACK-SHOT card.

This effectively bypasses all the bizarre protection
schemes used on formatting disks. The original disk boots up
and will execute because it is the original bought copy. Once
the program is in memory it can be copied. The current market
programs lock out the CTRL-C key and change the reset key.
Both of these will not affect CRACK-SHOT operation.

APPLE IS A REGISTERED TRADEMARK OF APPLE COMPUTERS

3

------------------_.-._._----------- ---------_._ ...-

A nice benefit of CRACK-SHOT is for game players.
CRACK-SHOT performs a nice service for players who reach a
high level of expertise in a game. No longer do you have to
sit through the initial stages of the game which tend to be
too slow or boring. With CRACK-SHOT you can save the current
state of the game at **ANY** time. This means if you have
reached the 10th level you may save it at that level. Then
boot that copy and you start at the level you saved it at.
Generally the more interesting and faster playing levels may
take 5-10 minutes of play to reach. Now you can enter at any
level. With the PACKER utilities you can create binary file
copies of these higher levels.

Besides being a program backup system CRACK-SHOT provides
the user with several nice hardware considerations. The APPLE
has an empty 2k block of memory at SCBOO TO SCFFF for
expansion use. This has now been filled up by the CRACK-SHOT
system. For'more information on the memory setup see section
3.0.

4

'"'1 2. 0 HOW TO MAKE A COpy

There are two switches on the CRACK-SHOT card. One switch
is called the copy switch and the other is the transparency
switch(more later). The copy switch will be used mostly. It is
the switch you press to obtain a copy of a program that is
running in memory. The copy switch is the switch closest to
the red LED. The transparency switch is the switch closest to
the user when the card is plugged in.

To make a copy of a program insert CRACK-SHOT in a slot
with the copy switch up. (power off). Try the first time
with the transparency switch up for enabled. The disk I/O card
must be in slot six. To use CRACK-SHOT to copy a program slot
zero must be empty (with CRACK-SHOT in any other slot but 6).
An alternative to nothing in slot zero is to have CRACK-SHOT
in slot zero, either will work. Turn on your APPLE and boot
the program you want to copy. When you are ready to copy
simply flip the copy switch on CRACK-SHOT down, the led will
light and you will receive a warning on the top of the screen
that a copy is about to be made. Have a blank disk in the
drive at this time. This is a warning because the disk in
drive one slot six (required slot~drive) is about to be
written on. If the disk is write protected the program will
stop. When you hit any key the program starts and 15 seconds
later you have a copy.

When the computer gives you the prompt 'COpy MADE' the
--",system wi11 seem to hang. ThiIi is due to the mother board roms

being locked out. You have two options to regain control. One
is to turn power off, then on. The other is to toggle the
switch another time or two until the led turns off. The mother
board roms are then enabled, if the system does not come back
with a prompt hit reset and it will possibly then respond.
Possibly because now the memory is setup as at time of copy.
If the copied program ha. set the break reset vectors then
there is no telling what will happen. Remember when you hit
reset on the APPLE locations S3FE and S3FF are used as a
vector to a reset routine. APPLESOFT DOS 3.3 is probably not
resident and memory is full of something???

The transparency switch is to make the card invisible.
Some programs will not boot up or start if they see an unknown
card in one of the interface slots. The transparency switch is
used to hide the presence of the card during bootup. When the
program is running put the trahsparency switch up. When it is
down the card is not visible to the computer. The normal
position of the switch will be up for enabled. If you run into
programs that refuse to boot up with CRACK-SHOT in the
computer then use the switch.

5

)--

disk when the
verified at

restart more

3.0 HOW TO RUN A COpy
~=====~m====_=====.===

To run your copied program on a CRACK-SHOT di.k you have
.everal options.

A) Execute with the CRACK-SHOT card.

B) Execute with language card program

C) Pack the CRACK-SHOT copy to smaller DOS 3.3 file
and use BRUN from DOS

D) Convert to 48k DOS 3.3 file and run with
language card program

A. Execute with CRACK-SHOT card

To run the copied program you type 'CALL 52224' in basic
or 'CCOOG' in the monitor. Make sure the transparency switch
is up for enabled.

CRACK-SHOT will ask you if you want to execute the
program when it is reloaded. If you hit 'N' CRACK-SHOT will
load the program and return control to you in the monitor. The
memory setup at that time is described at the end of this
section. If you hit 'Y" or any key except "N" CRACK-SHOT will

~eload the program and execute or restart the program for you.

There is one more menu you see before program execution.
This asks you what screen system to start the program in. One
minor problem with CRACK-SHOT is that at the time of program
capture CRACK-SHOT has no means of determining what screen is
currently being viewed. You could be in text page one,two or
hiresl etc••••• the menu asks which screen to start program
execution with. If you make an error simply restart the system
and choose a different screen. Most games use hires one or
two. Business programs usually use text one but, like some bit
copiers, text page two is sometimes used. You might make a
note on the copy disk once you know which screen the program
uses.

One note on loading. CRACK-SHOT uses an extremely simple
write format to disk but it does do checksum computations to
detect load errors. Every track is checked. After ten check.um
errors on a track the system will stop and tell you the track.
If you get repeated checksum errors the problem area can be
one of three things; A drive needs adjusting or maintenenct,
or A disk is physically bad. The third possible error is a bad
copy to begin with. The first thing to try after repeated
errors is the easiest, which is to recopy the program and try
to execute that copy.

CRACK-SHOT writes out the copied program to
switch is flipped. The data written to disk is
that time to minimize copy errors and make the

7

the copied
normal DOS
the file

reliable.

B) EXECUTE WITH LANGUAGE CARD PROGRAM

On the supplied utilities disk is a program (option 6 of
menu) that will load into a language card and execute a
CRACK-SHOT copy disk. The language card program is the same as
in A above only it loads into the language card and the
CRACK-SHOT card i. not needed.

C) PACK CRACK-SHOT COPY DISK TO DOS 3.3 BINARY FILE

The PACKER program is described in full. See section 6.0
of this document.

D) CONVERSION OF CRACK-SHOT FORMAT TO DOS 3.3

On the supplied disk there are two programs used in
converting the CRACK-SHOT copy disk to a DOS 3.3 16 sector
format. The first program does the actual conversion of the
CRC$-SHOT disk into a DOS disk. The second program is used to
execute the DOS disk.

The CRACK-SHOT disk contains 48k of copied memory. The
conversion program will copy all 48k of the CRACK-SHOT disk to
an initialized DOS 3.3 disk. There is only room for two copied
programs per side of a DOS 3.3 disk. To execute the copied
program use the second program supplied.

You cannot use normal DOS commands to execute
program because it is 48k long. If you want to use
commands then use the PACKER program and condense
down to a maximum of $91 hex.

To execute the program in DOS 3.3 format you need a
language card. Option 9 on the CRACK-SHOT master disk will
load a binary program into the language card, that program
will then run your copied program.

The benefit comes in that you don't need the CRACK-SHOT
card in the system. and the DOS disk is copyable by COPYA or
any brute force copy method for normal DOS.

CONVERSION PROGRAM OPERATION

Option 8 on the CRACK-SHOT master disk is the conversion
program. Run that option and you will receive instructions.
The CRACK-SHOT format disk that you wish to convert goes in
drive one. An initialized disk goes into drive 2.

The disk in drive 2 should not contain any information
besides converted CRACK-SHOT files. The directory is not
accessed normally. A CRACK-SHOT DOS 3.3 disk contains 1 or 2
programs stored in 48k long binary files. Only two files can
fit on one side. You can think of the files as 1 and 2. Names
are stored on the disk for directory information. The disk can

8

be cataloged by normal DOS and the files stored are shown as
locked binary files of length 5 sectors. This is not their
true length though.

When operating the CONVERSION program you can hit·C to
show what files are on that disk. if any. To convert put your
CRACK-SHOT disk in drive I, put an initialized disk in drive
2. You can store the copy in either position 1 or 2, you
select. Hit ·c to see if another file is already in one ot
those positions.

When you hit 1 or 2 the CONVERSION program will ask you
for the file name to store on the converted disK. Then the
program will prompt you for the screen to display on startup.
This screen info is stored with the file and on startup the
program will automatically show this screen. The conversion
then takes place.

Again, the files stored can be seen by the catalog
command from normal DOS but cannot be accessed except by
option 9 (described next).

RUN CONVERTED CRACK-SHOT DISK.

This is option 9 on the CRACK-SHOT master disk. Once you
have converted a CRACK-SHOT disk to DOS 3.3 format you can
execute the disk with this program.

When you run this option the program will ask you which
file 1 or 2 to execute. Hitting a ·c will show the files
stored on that disk by name. Hitting a 1 or 2 will execute
that file. The hires screen will come on during loading but
after the program is all in the correct screen will appear and
the program will begin.

These converted disks can be copied by COPYA or any brute
force copy method that copies tracks $0-$22.

To make a complete stand alone disk transfer files LCBIN
and EXLCBIN over to a disk **AFTER** you have converted 1
file. The disk can still hold small files. Make a HELLO
program that has one line•••••-=)10 print (ctrld)"EXEC
EXLCBIN". Then when you boot that disk it will immediately ask
you what file to execute ••1 or 2.

The data is stored on tracks :

$03-$OF
$11
$14-$20

FOR FILE 1
DIRECTORY
FOR FILE 2

You can load a program into memory but not execute with
the CRACK-SHOT card or the language card read (option 6 on
utility disk).

The following register storage locations are for the
CRACK-SHOT card. If the language card is used instead of .CBxx
the data is at $DBxx.

9

If you choose not to execute the program but only to load
the memory will be set up as follows.

PAGES

'00-$01
'02-$CO
'ce
SC9
SCA

MEMORY

.CBFF

.CBFE

.C9FD
'CBFC
'CBFB
.CBF9
.CBFA

CONTENTS

TRASH,COULD BE ANYTHING
COPIED AND RELOADED PROGRAM
PAGE 0 OF COPIED PROGRAM
PAGE 1 OF COPIED PROGRAM
PAGE 4 OF COPIED PROGRAM

STORED FROM COPIED PROGRAM

ACCUM A AT TIME OF NMI
X REG AT TIME OF NMI
Y REG AT TIME OF COpy
STACK POINTER AT TIME OF COPY
PROCESSOR STATUS AT TIME OF COpy
PROGRAM COUNTER LOW AT TIME OF COpy
PROGRAM COUNTER HIGH AT TIME OF COPY

This data is useful for program analysis. Please note
though that if you choose *NOT* to execute the program at
reload the action of reentry to the monitor may destroy some
vital locations used by the copied program. As shown above
pages 0,1,4 are up in the ram above .CBOO. But the monitor
does use screen memory pages 5,6,7 and some of page 2 and 3.
To adequately Sdve all and have unchanged access would require
more ram then available. The utilities will selectively load
sections of memory for analysis.

Advanced users can access the CRACK-SHOT data disk. The
data is written to disk 10 pages/track from page 02 to CO then
ce to CC. On each track there are 256 sync bytes written to
disk first then the 10 pages are written in two page blocks.
Each original memory page is made into two disk pages. Each
original memory byte is made into two sequential disk bytes.
The first disk byte is the original memory byte 'ORED' with
'AA. The next disk byte is the original memory byte shifted
right one and 'ORED' with 'AA. This is similar to the encoding
method used in address marker. of normal DOS. In between each
original memory page one byte of $FF is written out to allow
time for computation check of addresses. At the end of each
track is a checksum calculated from the original 10 pages. The
single byte checksum is stored as two disk bytes described
above.

There are utilities included that operate under DOS3.3.
The first is an editor to allow editing of data on a
CRACK-SHOT disk. Several track at a time will be brought in
and editing allowed before rewrite. The other utility accesses
the CRACK-SHOT data disk to compact and store the copied
program as a binary file on a DOS disk. This allows storage of
several programs on one disk to condense the number of disks a
user has. -"

10

QUICK COpy PROCEDURE

With APPLE power off insert CRACK-SHOT with switch up in
any slot Cmake sure zero is empty or CRACK-SHOT is in slot
zero). Turn on power and boot the program you wish to backup.
Take out the original disk and put in a blank disk. When you
have the program to a desirable pointCusually the intro menu
or game menu) flip the copy switch on CRACK-SHOT. CRACK-SHOT
will give you a warning. If you wish to abort, turn off the
APPLE. When you hit a key the copy will take place in only 15
seconds. Label the disk.

QUICK RUN PROCEDURE

the
This

5

turn power off count to 4 before turning on
This allows a capacitor time to discharge.
from card to card, it is anywhere between 2

CRACK-SHOT can be in any slot except six where the disk
controller is. To run your copy you can be in basic or in the
monitor. In basic type 'CALL 52224' or in the monitor type
'CCOOG' and the CRACK-SHOT run program will start. It will ask
you EXECUTE OR NOT? type spaceCdefault yes). It will ask you
what screen to display. Again games usually use hires 1 or 2•

.-~,You can always restart if you choose the wrong screen. After
'that the system will execute and you will see the program
start.

If you
power again.
time varies
seconds.

Alternate execution methods are covered on page 4.

*****NOTES********

It is important to stress again the placement of
CRACK-SHOT. For making a copy of a program the CRACK-SHOT card
can be in any slot. The main requirement is that no RAM or ROM
card be present at time of copy. CRACK-SHOT could go in slot
zero. The disk 110 card has to be in slot six. For running
copied programs CRACK-SHOT can go in any slot. Slot zero can
have any card. The disk 110 card again must be in slot six.

There is a capacitor used during powerup on the
CRACK-SHOT card. If power is turned off the capacitor must be
allowed to discharge before turning power back on. The
required time is between 2 and 5 seconds. If you cycle power
count before turning on again.

11

When the program to copy is interrupted (by copy switch) ~there are certain code sequences the processor will hang when· ,
the program copy is restarted. The solution to this i. to
interrupt at a slightly different time. This is a rare
occurance but should be recognized.

The CRACK-SHOT system has been tested with many different
programs. As the state of the art of programming evolve. there
may be programs not copyable by the current system. The
software of CRACK-SHOT is socketed in .prom and can be updated
as changes happen. The utility editor will allow some changes.

12

4.0 MEMORY SETUP OF HARDWARE
~=c===============a===========I

CRACK-SHOT consists of lk ram using two 2114 ~hips of lk
by 4 bits. It also has a 2716 eprom with 2k by 8 bits eprom
used for program storage.

1. lk ram interfa~ed at SCBOO
2. 2716 eprom interfa~ed

a) lower lk at SCCOO to SCFFF
b) upper lk at SFCOO to SFFFF

only a~tive when NMI o~~ur&

Program developers ~an write software to operate using
the CRACK-SHOT e:ard.The eprom is soe:keted.

In normal mode(led off) the lower lk of the eprom is
visible. The upper lk of the eprom is only visible when a NMI
interrupt is generated on CRACK-SHOT(led on) by flipping the
swite:hon the ~ard. The ~ard lo~ks out the motherboard rom and
enables the upper lk of the 2716 to the addresses of SFCOO TO
$FFFF.

13

~------------------------_._---_.-------_._-

14

-~ 5.0 EDIT UTILITY
=========~=======

This utility will allow the user access to the CRACK-SHOT
copy disk for editing and analysis purposes. The user may read
in a section of memory from disk ,disassemble the buffer ,edit
and write the buffer to disk. The last page of this
documentation is a cross listing of original memory at time of
copy versus what track the memory is stored on.

The editor is on a DOS3.3 disk.
When you run the program you will see a menu of options.

1. READ TRACKS TO BUFFER
2. DISASSEMBLE BUFFER
3. EXIT TO MONITOR
4. WRITE BUFFER BACK OUT
5. EXIT TO BASIC

1. READ TRACKS TO BUFFER

You may read in up to 13 decimal tracks at a time. The
buffer starts at $1000 hex and goes up to $9100 hex if the
maximum of 13 decimal tracks are read. On the right of the
screen is the current status of the buffer. This status is
updated when you read into the buffer. It is displayed in the

~ ..main menu and the read/write sections. When you select option
1 the screen shows you all possible 13 hex tracks and the
pages contained on each track. As mentioned before this page
is duplicated at the back of this documentation. On entry to
read section the program will prompt you for the starting and
ending track numbers (enter in hex as displayed). Remember no
more than 13 decimal (00 hex) tracks at a time.

Note that track 13 hex only has 4 pages. The restart data
is on page SCBOO, the fourth page of track 13. See CRACK-SHOT
documentation for more on placement of the restart data.

When a track or series of tracks are read in remember
they are not placed back to their copied location. They are
placed into the buffer beginning at $1000. Thus when
disassembling remember the displacement factor.

15

The status information is 4 lines of labels and numbers. ~.

TRACK STRT >
NUM TRACKS >
BUFFER STR >
BUFFER END >

All numbers in hex

The first is tra~k start and shows the first tra~k in the
buffer. The next is the number of tra~ks in the buffer. The
next is the buffer start (always $10 for $1000 hex). The last
is buffer end, for the last page of the buffer. The buffer
does in~lude through this page.

Buffer start and buffer end are only given as page
numbers. Parts of pages are never written or read.

This information is given to fa~ilitate storage of the
buffer to a DOS 3.3 isk. Sin~e the editor runs under DOS the
user ~ould read in a buffer •.••exit to basi~•••• and store the
buffer with a binary save ~ommand.

There is a ~he~ksum ~al~ulation on the read data. If the
data does not read reliably the program will stop and inform
you. It then returns to the main menu.

2. DISASSEMBLE BUFFER

On~e some data has been read in the user ~an disassemble
the data using this ~ommand. The status information i. giver·~
here also to show the limits of the current buffer.

On entry the user is asked for the address to start
dissasembl$. Enter the number and hit return. Then 20 lines of
assembly code will be shown. If you hit a space the next 20
lines will be shown, et~. If you hit return you go to the main
menu.

Remember the ~ode is not pla~ed ba~k to where it was
copied and is displa~ed.

3. EXIT TO MONITOR

This option allows you to enter the monitor and make some
changes to the ~ode in the buffer. Once the changes have been
made reenter the program with a command:

*8006 (CR)

The buffer and pointers are still inta~t and you ~an
write the buffer out with the next option.

16

.- .. _----_._~----------~---~------ ~--------~- _._--~------------

,4. WRITE BUFFER BACK OUT

This option writes out the buffer back to disk.

******PLEASE BE CAREFUL HERE!!!

When you hit the next key after the prompt the disk in
slot six drive one will be written onl!! If it is not the
CRACK-SHOT disk it will be overwritten. If it is write
protected the program will stop.

The program writes out to disk the same track(s) read by
option one. There is a verify after write on this option. If
the disk cannot verify the written code it will tell you this
and return to main menu. This is unlikely since you just used
this disk to read in the code.

3. EXIT TO BASIC

This option allows you to save the buffer or parts of to
a DOS 3.3 disk using the BSAVE command. The status information
tells you the end of the buffer. The buffer begins at $1000
hex always.

rRACK STORAGEALL NUMBERS INHEX

TRK

PAGES TRKPAGES

0

02-0B OB70-79
1

OC-15 OC7A-83
02

lo-1F 0084-80
03

20-29 OE8E-97
04

2A-33 OF98-Al
05

34-30 10A2-AB
06

3E-47 11AC-B5
07

48-51 12B6-BF
08

52-5B 130,1,4AND RESTART
09

5C-65
OA

66-6F

17

6.0 PACKER UTILITY

INTRODUCTION

This program will aid in creating a binary DOS 3.3 file
from your CRACK-SHOT copy disk. This will compact your
programs and the number of disks necessary to store them as
well.

BASIC THEORY OF PACKING

Shown below is a map of the apple ram (random access
memory). This does not include the 16k upper ram of a ramcard.
The CRACK-SHOT disk does not have the upper 16k .tored on
it.Therefore the upper 16k are never used or discussed. Many
programs do not require this upper 16k.

All numbers are in hex

PAGES

'COso $8 .20

! Hi-Res 1
I

S40 S60

Hi-Res 2 !
I

S96

! DOS
I

the
time
the

back

In this document and in the PACKER program all numbers
preceded with a $ symbol are in hex. For those of you that
have never used hex it is quite easy to learn. If you need to
learn or want a refresher see appendix A.

A convenient way of referring to parts of memory in the
APPLE is to use pages. A page is 256 bytes of memory. On the
CRACK-SHOT disk there are 'CO pages of memory. SC in base 10
is 12. Therefore there are 12*16 decimal pages of memory
stored on a CRACK-SHOT disk. These are the first SCO p.ges of
memory on the APPLE.

The CRACK-SHOT disk contains all $CO pages plus
necessary data to restart the program that was running at
of copy. A reference of what pages are on each track of
CRACK-SHOT disk is given by the PACKER program and at the
of this document in appendix B.

You have made a copy of the original program with the
CRACK-SHOT card. The CRACK-SHOT disk now contains $13 tracks
of data. When the copy switch was hit CRACK-SHOT copied memory
pages SO-SCO to the CRACK-SHOT disk. From tracks 0-'12 there
are 10 pages of memory saved on each track. Track'O stores
pages S02-'OB. track 1 contains .OC-.15••••••track .12
contains pages 'B6-SBF. Then on track $13 CRACK-SHOT put the
necessary data to restart the copied program.

The CRACK-SHOT disk can't be booted as a DOS 3.3 disk. It

19

can be booted by the CRACK-SHOT caFd,oF otheF utility pFogFams
opeFating undeF DOS 3.3. Although the bootup i. veFY fast ,10
seconds, it FequiFes a dedicated disk. The PACKER pFogFam is
used to pack the CRACK-SHOT disk to a binaFY file and save it
to a DOS 3.3 disk. This binaFY file can then be executed fFom
nOFmal DOS.

The pFogFam is called PACKER fOF a definite Feason. The
laFgest binaFY file you can Fead/wFite to a DOS disk is sao
pages long. TheFe aFe SCO pages stoFed on a CRACK-SHOT disk.
Obviously you can't stoFe the C~ACK-SHOT disk as one big
binaFY file. What must be done is to decide what paFts of the
oFiginal SO-SCO memoFY pages, stoFed on the CRACK-SHOT disk,
to save. You will load in parts of the copied memOFY into a
buffeF and look at it with some utilities. When you find a
part of memOFY in SO-CO Fange you want to save use option a to
add it to the binaFY file you aFe building. TheFe aFe
utilities to aid you with selection and packing.

This binaFY file you build will contain a Foutine (placed
automatically by PACKER) to Felocate memoFY modules cOFFectly
and restaFt the progFam copied by the CRACK-SHOT caFd. A
memOFY module is a section of memoFy you chose to include to
the file.

EXAMPLE: Say you have a progFam on CRACK-SHOT diEk. Let's
say also you know the pFogFam has paFts at SaOO-$1200,
ShOOO-Saooo, and seOOO-SeFOO. Then theFe aFe thFee modules;
one module for each memory section mentioned above. You could
say why not make one module from saoo to seaoo. Well the
longest binaFY file you may save/read i. $7AOO long ($9100
with language caFd PACKER). The above file is $aOOO bytes long
and cannot be loaded by nOFmal DOS. So the PACKER pFogFam
takes only the required memoFY and packs them together.

Then at execution time a small relocate pFogFam places
these packed modules to their COFFect locations. This Felocate
program is called RERUN. It not only puts the modules back to
their pFoper position but Feloads pFocessoF registeFs and
restarts the program copied by the CRACK-SHOT caFd.

The PACKER progFam loads a binary file ,called the STORE,
with modules and FestaFt data. This is the file ,that once
completed, will be saved on a DOS 3.3 disk. This is the file
you will execute in replacement of the CRACK-SHOT or original
disk.

20

Below
program.

is a map of memory while running the PACKER

$0 $8 $20 $67 $9A $CO

! PACKER STORE ! BUFFER

!-)

DOS

The PACKER program resides in memory from page $08 to
page $20. At page $20 the STORE begins and builds up. The
language card version has the PACKER program stored from $DOOO
uP. and the STORE begins at $0800. The term lc will stand for
language card. The buffer starts at page $67 but as the STORE
increases in size the buffer will draw away and shrink. this
is automatic. The buffer cannot overwrite DOS as DOS is needed
to write the binary file to disk once the file is built. The
buffer is used to read in parts of the CRACK-SHOT disk for
analysis. The user decides whether to include the memory in
the buffer or not. The section added will be a new memory
module.

This completes the Basic theory. We know the CRACK-SHOT
disk contains all memory $O-$CO. The PACKER program is used to

~ select parts of the CRACK-SHOT disk to be included in the
binary file. These parts are called modules. The binary file
is made up of these modules and a program called RERUN. that
puts the modules back to their correct place and restarts the
program copied by the CRACK-SHOT card. The next sections will
expand greatly on performin.g these actions.

21

PROGRAM OPERATION

Run the program PACKER and the following menu should
appear.

PHYSICAL $67 $6C
LOGICAL $OC $11

TRACK START >01
NUMBER OF TRACKS >01
PHYSI BUFFER START>67
LOGIC BUFFER START>OC
PHYSIC BUFFER END >7B
PHYSICAL FILE END >20
LOGICAL FILE END >20

PACKER MENU

OPTIONS:

L INITIALIZE
2. READ TRACKS
3. DISSASSEMBL$
4. ASCII DISPLAY
5. ASCII MARK
6. CODE MARl<.
7. FULL MARK
8. ADD TO FILE
9. PAGES STORED
A. SAVE FILE
B. EXIT TO BASIC
C. RUN COM FILE
E. EXECUTE CURRENT STORE

(ESC> CATALOG DOS 3.3 DISK

First let us look at the upper right part. This is the
status area and will give information needed on the current
state of the buffer and STORE. There are seven different
labels and values with each label.

From the top the first label is TRACK START. This is the
first track stored in the buffer. On the CRACK-SHOT disk there
are $13 tracks of stored data. During packing you will read in
several of these tracks to the buffer. TRACK START tells you
what track starts the buffer.

The next value down is NUMBER OF TRACKS. The number of
tracks contained in the buffer is displayed with this label.

The following label is LOGIC BUFFER START. I now must
introduce two new concepts. They are physical and logical
addresses. Data in the buffer has a physical address in memory
when you run the PACKER program, the physical address is the
data's address at that instant. But it contains data read from
the CRACK-SHOT disk. That data from the CRACK-SHOT disk has an

22

cover
status
of the

address called the logical address. EXAMPLE: Say the buffer
start is $6700. Then the data's physical address is $6700. Now
say we read in track 1 from a CRACK-SHOT disk. In appendix B
we see that track 1 contains data copied from $OCOO-up. The
data was at $OCOO during original program execution but the
CRACK-SHOT card copied it and put it on track one. The logical
buffer start is then $OCOO. That is where it was copied from.
That is where the data should actually go. We cant put it
there because it interferes with the PACKER program and the
STORE, so we put it in the buffer.

The neKt label is PHYSICAL BUFFER END. This is the
position in memory where the buffer ends. Beyond that point
there is nothing of interest. So in between PHYSICAL BUFFER
START and PHYSICAL BUFFER END is the data read in from the
CRACK-SHOT disk.

NeKt on the list is PHYSICAL FILE END. The PACKER program
builds a binary file from the CRACK-SHOT disk with your help.
The binary file in memory is called the STORE. To give you an
idea how large a binary file you have built so far the
physical STORE end is given. The STORE always begins at
$2000($0800 for lc version).

Last on the list is LOGICAL FILE END. The binary file you
are building will eKecute somewhere in memory. PACKER allows
you to build it with a starting address anywhere between $800
and SAOOO. The file is built from $2000 ($0800 for lc version)
up but it is modified to be able to run in the above range.

~You wi11 need to specify the starting address when YO~1
initialize' the STORE. More on this later. With LOGICAL FILE

END you can monitor where your binary file ends.
On the lower left is the menu of options. We will

each option in sequence. First another addition to the
area. On the top of the screen aid you in keeping track
buffer status and contents.

Remember our discussion on PHYSICAL and LOGICAL? The top
two lines will give a translation every 5 pages between the
physical current address, and the LOGICAL address the data
belongs, every five pages. Going back to our previous example
we read in track 1 to the buffer. The buffer starts at $6700
and the data was read from the CRACK-SHOT disk to that
address. We see from appendix B that the logical address for
the data is at $OCOO. Five pages into the buffer at $6COO the
logical address is Sl100.

We can see from the status area on the right that the
TRACK START is I, the number of tracks is I, the buffer starts
atS6700 and ends at $7BOO. The LOGICAL BUFFER START is SOCOO.
The more you use these the easier will become reading them. On
to the MAIN menu.

23

1. INITIALIZE STORE

This is the first step to start building a file. You need
to have two things worked out before entering here. The first
is the starting address of the binary file you are about to
build. The STORE (the binary file as it is built) is going to
be built for you from $2000 ($OBOO for Ie version) to 7700.
This does not mean you will run it from that address. The
STORE will be modified to run within a certain range of
memory, you supply the starting address.

PAGES

$0 $8 $20 $40 $60 $96 $CO

! Hi-Res 1
I

Hi-Res 2 ! ! DOS
I

When you enter initialize the program will prompt you for
your CRACK-SHOT disk. Then it will ask you two questions. The
first is to enter the starting address of the binary program
you will build. That address can be between SOBOO and SAOOO.
This is the addr~ss where the binary file you packed will
start loading in at. Once packed and saved to a DOS 3.3 disk,
to execute the packed program you will type 'BRUN NAME,A$lAOO'
where $lAOO is the starting address in this example. On
receipt of this command DOS will go to the disk and look for
file NAME, if found it will load the binary file into memory
starting at SlAOO, (lAOO for this example). The first question
in INITIALIZE is to enter a starting address of your choice.

The reason that you cannot load below SOB is because part
of the initializing routine is to read in those 8 pages and
put them in your STORE. This is **always** done. The lower 8
pages are used in several different ways by programs. One
obvious way is that they are the video mapped memory used by
the APPLE. Many programs use this area of memory. Down at
pages 0 and 1 are many system and processor locations. The
6502 uses page one as the stack, thus it must always be
copied.

PACKER does not give you the option on this count. The
first 8 pages of memory are automatically included into your
STORE. The first 8 pages of every file you create with PACKER
will always be the lower 8 pages of memory. They are also the
first 8 pages to be relocated. This is all automatic and is
only given for full information. The program RERUN is
appraised of this also.

To get back to the two questions asked, the first
requests the starting address of your binary file. Now a
little logic on selecting this value.

You are going to build a binary file made up of memory
modules. These modules will be relocated to their correct

24

~~ddresses and then RERUN starts the program that we packed.
The memory modules are sections of memory you choose to
include in the STORE(binary file). The best way to explain
this is with an example.

The memory map below shows the APPLE memory with a
program marked. The program is in 3 sections and is the parts
of the map marked in stars.

PAGES

$0 $8 $20 $40 $60 .96 $CO

! Hi-Res 1
!

Hi-Res 2 ! ! DOS

!==:z===-===a:===!

508

!******!
.18 $22

.37

!*****!
$40 '4A

!++++++++++!
550 S7F

!+++++++++++++!
540 56F

!******!
S90 $Al

There are three program areas. Their total length is $28
pages. Don't forget about the lower 8 pages that are included
'automatically. With their inclusion the length of the binary
file is now $30. What is needed is the ability to take their
compacted form and fit it into memory somewhere. There are
several criteria for this placement. First of course is the
limit set by the program of starting between S08 and SAO.
Second is to avoid suicide. This happens when the program
attempts to write over itself.

As an example three alternative packing locations are
given. The two locations marked with plus signs are OK. You
could pack the binary file between $50 and 57F. This is
beneficial in that it does not interfere with the relocations.
Remember in the memory between $50 and '7F are the modules
that need to be relocated to the three starred areas. Since
the $50 area is not overlapping any stars there is no chance
for a conflict. Another alternative would be to pack it
between .40 and $6F. This is really just as good as the
previous location. Even though it resides where one of the
modules goes if you check the sequence of placement you will
see there will be no conflict. By the time the module at
'40-$4A is to be placed the binary file is up around $50. The
lower 8 pages have been moved out and the range of $18-$22 has
been moved.

The last alternative is the bad selection. This attempts
to pack the three modules and put the binary file starting at
$0800. This leads to trouble. The first 8 pages are relocated
without any problems. But now we wish to move the first set of
stars out to their proper location at 51800 to $2200. The

~.

25

---~'-----'-'-_.'----.-----.- ..----_. --------_.~--_._-_._----_.- --------

module is stored at $1000 inside the binary file (remember it ~
loads at $0800 and first 8 pages are lower mem). It extends up
to $1AOO. An error will occur$!!. The modul.e'sdestination is
$1800. If RERUN puts the module out to its correct location it
will overwrite the end of the module stor.edin the binary
f i 1e.

The map below should help visualize the movements for the
bad selection.

BINARY FILE

Logical
$0-$7 $90-A1

!===.=======================~====~==z=====.=======!
$08

Physical
$10 $1B $26 $37

This may be confusing but sit down and read through this
a couple of times. One benefit that PACKER provides is error
checking. When you try to add a module to the STORE the
program PACKER will check for errors. Also at the time of
saving to a DOS 3.3 disk the file is checked again. This
second check will become obvious later.

So for this example the input to the first question could
be $30. The program wants only the page number of the starting
location. You cannot start the binary file in the middle of a
page. Later in the text we will refer to the value entered
here as the DESTination, or DEST for short.

The second question asked in this initialization is
placement of the restart program RERUN. All this time we have
been talking about moving the memory modules around something
must be in control and doing the moving. That something is the
RERUN program. It is a one page restart program built into
your binary file. It will be modified to fit wherever you want
it to go. As with the first question there are limits and
placement logic. The limits for RERUN placement is it must be
after the DESTination and not more than $7A ($90 for Ie
version) pages after DESTination. It cannot be in the first 8
pages either as they are reserved for the lower 8 pages of
memory that are copied every time.

The logic for selecting RERUN's location is not too hard.
RERUN is inside the binary file you are building. It is
always in control and therefore can never be overwritten. Pick
a single page of memory that is not used by your copied
program and put RERUN there. Remember the aforementioned
limits. You can usually find a page such as that pretty
easily. There are utilities and text to help you decide where
to put the 1 page of RERUN program. See option 6 code search
in the documentation.

In the above example a good choice could be $70. Enter
the page number only. This entry in later text will be
referred to as REDEST. This page was net used by the program
we copied. Ah.. you say it is in the middle of one of the
modules. Not so•• the values of DEST and REDEST are set before

26

"""""

~nything else. They define the building points of the binary
file, the STORE. Later when you begin to add modules the
PACKER program will automatically split modules to fit snugly
around the RERUN program. In other words if you want to add a
module to your STORE, and it will try and overwrite RERUN the
Packer program will split the module and make two modules with
the RERUN program between them. This is automatic and will be
taken care of for you.

After the two questions are answered the disk drive will
spin shortly. This is Packer loading the first 8 pages to the
STORE and loading the restart data into RERUN.

Next you pick the screen that is to be shown at execution
time. It could be hires 1.2 text 1.2 etc••• You will be asked
four questions on screen control. This is the same as the
options menu on the CRACK-SHOT card restart program. Packer
needs to know what screen to build into RERUN. There are 4
questions with two options for each. Option 1 is default, if
you hit any key but 2 for the alternate, option 1 will be
chosen. They are self explaining.

We spent a long time in this section as initialization is
extremely important. Proper selection of the binary file
location is important. More examples will be given later in
the text.

That finishes INITIALIZE!!!!

2. READ TRACKS TO BUFFER

This is a complete copy from the EDITOR program. You will
be asked to enter the range of tracks you wish to load into
the buffer for working with. Please note one added feature.
Just above the first query of 'START TRACK' is a status line
of 'TRACKS ILOAD '. This is the maximum number of tracks you
may load in from this section.

As in the EDITOR program there is a listing of the tracks
and the pages stored on each track. If you hit return when
asked for the starting track the program will goto the MAIN
menu.

3. DISASSEMBLE CORE

This option allows you to use the APPLE disassembler on
any area of memory. This will be one of your major means of
determining what parts of the CRACK-SHOT disk to include.

You could read in a section of the copied program, from
the CRACK-SHOT disk. Then use this option to disassemble the
buffer area. The limits of the buffer and the logical memory
area are all given in the status area.

EXAMPLE:

~ to
'Now

You have made a copy of a program. Now you wish
pack it. Using option 2 you read in a section of memory.
you can use option 3 to disassemble the buffer. On entry

27

to this option the status areas will be displayed and the
computer will ask you for the starting address to begin
decoding. Enter this as a full address, not as a page number.
The computer, ~hrough calls to the mini disassembler in rom,
will show you 20 lines of code. At that time it will h~lt and
wait for a keypress. If Return is hit the computer will exit
to the MAIN menu. If anything else is pressed the next 20
lines of code will be shown. This will continue to loop until
a Return is hit.

The benefit is the ability to look at sections of the
CRACK-SHOT disk and see if a program is there. The
disassembler will list the address, the instruction codes and
the assembly mnemonics. For the novice at assembly language
appendix C will help you in spotting possible program areas.

4. DISPLAY MEMORY AS ASCII

The program you copied will not only have instruction
codes, the machine code that actually 'runs' the program, it
will also have some parts of memory set aside for ASCII
storage. ASCII is a term used to represent the codes of
letters,numbers,symbols •••etc. There is a table of reference
such that every letter, number ••••• all are represented by a
unique hex number. The program uses these codes when it wants
to print something on the screen. This program has several
pages of nothing but ASCII codes.-"

An example would be the MAIN menu. That menu is put on
the screen by a driving program. The driving program has a
certain place in memory where a copy of the menu is stored in
ASCII form. Most programs use areas of storage for ASCII. You
will need to look for these also and include them in your
STORE. If you did not then how would you run the program if no
menu or prompts were put on the screen? Also the programs
usually expect the ASCII to be there, if not then the program
will sometimes blowup or go off into never never land.

On entry to this section the usual status will be
displayed. Then the program will prompt you for the starting
address to begin showing memory. Enter a complete address, not
a page number.

The program will then begin displaying memory as if it
was ASCII stored. It is easy to spot the areas you want. You
know what menus, prompts etc are part of the program you
copied. Look for them. You might be surprised what else you
can see. Some programs I have looked at actually have parts of
other programs or source code for development. The display on
the screen will give you 32 characters per line with an
address on the left. As in the disassembler section if you hit
Return the program goes to the MAIN menu. If any other key is
pressed the next series of memory is displayed.

5. ASCII SEARCH AND MARK

Here is a search utility to help you. This section will

28

search the buffer for oCCurrences of ASCII. The program will
start with the first page of the buffer and count the number
of stored bytes with values between .AO to .DO. This is the
normal range of ASCII for letters and numbers. At the end of
the page it has a count. It compares this count against a
stored value. If the count from the page it just checked is
greater than the stored value it 'marKs' that page. All pages
of the buffer are checked. At the end of the buffer all the
'marked' pages are shown to you. Say the buffer starts at
.6700 and has one track in it. If you use option 5 all 10
pages of the buffer are checked. At the end the program shows
you which pages in the buffer were marked.

At the first of this section we talked of the stored
value. This is the value the count must equal or pass to
'mark' the page. This value is set in the program but can be
changed by the user. On entry to this option the program
displays the current value and requests a new one. If the user
likes the current value just hit return and the program
continues with analysis. If the user wishes to change the
value he enters the new one. The program will then use this as
the default value until changed.

After the buffer is checked the marked pages are shown.
They are listed in the format shown below •

•67••••71 .79••••82 .90••••90

There will be from 0 to ?? pairs of numbers listed. The
first number of a pair is the first page marked in a
continuous series. The second number after three dots is the
last page marked in a series. All numbers in between the
values are marked also.

6. CODE SEARCH AND MARK

a
of

is very similar to the previous. It is
the buffer memory for possible areas

This section
utility to search
instruction codes.

The buffer is searched page by page as in the previous
section. This time the program counts the number of assembly
lines it can find in a page. When the APPLE disassembler is
called an address is passed to start the disassembly at. What
this section does is pass the disassembler a page of memory
and counts the number of lines of assembly code it generates.
For each page it gets a count. It compares this count against
another stored value different from the ASCII value. If the
count for the checked page is lower than the stored count the
program 'marks' that page. The count for each page is
displayed on the screen before checking. When you run this
section you will see a block of numbers displayed on the
screen. These are the counts for the pages the program is
checking. At the end of the buffer all marked pages are
displayed just as in the previous section.

On entry to this section the current stored value, called
'sensitivity, is displayed. The user may change it the same as

29

in the previous section. Now a few words on the sensitivity.
The fewer lines of assembly code the disassembler generates
the more 11kely the page beingchecked is a valid page made up
of instruction codes. Therefore to make the program very
sensitive to finding pages ,and finding some borderline or
trash, make the sensitivity value high. A good value found
currently is around $AO. Assuming an average of two bytes per
line of assembly code comes out to a sensitivity of $80. Try
different values and see what results you get.

There is another searching and marking algorithm used in
this section. This is transparent to the user but is done
automatically. Any page that is marked with having possible
code is checked again. The next check is for 16 bit indexing.
This is a popular means of moving data, doing table lookups
and many other objective•• PACKER cannot spot data or table
areas easily. The data or table can be made up of any values.
One way to try and mark those pages and include them into
your STORE is to look for the program using them. That is done
in this part. PACKER will take any marked page with a count of
less than $80 and do a search for 16 bit indexed used. Any
page. indexed into by the program will be marked for you, also
any pages jumped to by a JMP or JSR are marked. That is why
strange pages may appear in the marked display. Your buffer
may only contain between $02-$33 but the marked pages when
shown may have other values marked. These were obtained by
looking for these indexing opcodes.

Here i. a good place to pick a value for REDEST. Before
INITIALIZING come to this option and do code search. Choose an
unmarked page and disassemble it with option 3, if it looks
like trash or unused then use it as REDEST.

See appendix C for more detail on assembly code
searching.

7. FULL CHECK OF CRACK-SHOT DISK

This section will do a full search and mark on the entire
CRACK-SHOT disk. All memory pages will be loaded and searched.
Both the code and ASCII search will be used. On exit the
program will display the marked pages the same as in options 5
and 6.

There is one important thing to stress here. Use of this
option after you have started building the STORE is not
recomended. The original full size buffer will be used for
speed. If your STORE has a physical STORE end past $67 then
you will lose that data. Remember as the STORE gets larger the
buffer shrinks to draw away from the end of the STORE. This
section will not use the small buffer size but use the
original full buffer. If you have started building and the
physical end is not at or beyond $67 then you can use this
option safely.

The use of this full check can greatly help spotting the
useful areas of memory. You may obtain a hardcopy of the
marked pages the same as in the previous sections by entering
the printer address when requested. If a carriage return i5-,

30

hit the output will go to the screen.
Since this section calls the code and ASCII mark options

the current sensitivities before entering are used. If you
want a more optimistic marking make both sections 5 and 6 more
sensitive.

8. ADD TO FILE

This section is used to take portions of memory in the
buffer and move then to the STORE. You must have previously
INITIALIZED. You have looked at the buffer with options 3-7
and now you are ready to move a portion from the buffer to the
binary file, STORE, you are building.

On entry the usual status areas are displayed. The
program will prompt you for the beginning physical page number
to add. If you hit return the program goes back to the MAIN
menu. Two things to emphasize here!! The first is you will
enter the **Physical** page number, not the logical. The
translation table at the top of the page will help you
recognize what logical parts of memory you are adding. The
second thing is to stress that you are to enter the page
number only, not the full address. All additions to the STORE
are in full page increments. No half or partial pages are
included.

The program will prompt you for the ending physical page
number. Again this is the physical, and you must use page
numbers. The number you enter will be included also. So if you
enter $67 first and then $6B the program will take pages
$67.68.69.6A.6B and move them into the STORE as a memory
module.

Before moving the pages to the STORE the program will
first do an error check. The first error check done is to
ensure that you do not attempt to overwrite REDEST. In the
initialization you. entered a logical address for the RERUN
program to go. You cannot save a module which will attempt to
relocate over REDEST. Remember, you must pick a page for
REDEST that will not be used by the program you copied. If you
do attempt to overwrite REDEST the program will print an error
message and ask for the starting address again.

The next error check is for an attempt to overwrite
itself. This is the same error that we covered in the
initialize section. Any attempt by the module to overwrite
itself or another unplaced module is not allowed. An error
message is printed and you are prompted for the starting
physical page again. At this time you have two options. The
first is to start over again and change the location of DEST.
By doing that you may be able to move the binary file around
enough to stop any overwrite errors. This is not the best
solution but you may have to resort to it sometimes.

The other alternative is to delay adding this section.
This is going to be tricky but let's try with an example. Lets
go back to our old friend the example used in INITIALIZE.

~,Below is the map again.

31

BINARY FILE

$0-$7 $18-$22 ! $40-$4A $90-A1
Logical

!D======B=a~=============.============_====_==_=D=!
$08

Physical
$10 $1B $26 $37

This setup causes an error when the module stored at
$10-$1A moves out to its correct position at $18-$22. A
solution to t~ts would be to delay including this module until
later. If you added the module for $40-$4A before the $18
module then there would not be a problem. The new map shows
the memory setup.

BINARY FILE

Logical
$0-$7 $40-'4A ! $18-$22 '90-Al

$08
Physical

.10 SIB .26 $37

The module placement above would be correct. The modules
are always moved one page at a time starting with the lowest
page in a module. Thus the page at $IA physical has a logical
address of $18 and can be moved dawn. The module below has
already been moved out so the space can be written on.

This brings up the order of placement. The modules that
you add to the STORE are placed back into their correct memory
locations. They are done one module at a time starting with
lowest module in memory and moving up. Thus any memory below
the current module can be written to if desired. The only
exception to this is when the RERUN program is below the
current module. You can write anywhere but that particular
page. In the initialize section we said you must pick a page
not used by the copied program.

For final execution it does not matter in what order the
modules are placed. All modules are relocated before program
restart occurr$. Placement order only matters when trying to
solve problems as shown above.

9. SHOW CURRENT PAGES STORED

have
the
want
want

This option will allow you to determine what pages you
already moved into the STORE. On entry to this section

computer will ask for your printer card address. If you
a hardcopy of the data enter the address. If you only

to see the data on the screen then hit return.

32

For the printer card address enter a full address. If you
have a special printer driver just enter it. address.

The usual status areas are displayed then DEST and REDEST
with labels. Below this is a printout similar to the marked
pages output from code or ASCII search and mark. The computer
will print several pairs of numbers. Each pair of numbers is a
module. The first number is the logical start of the module.
The next number, after three dots, is the last page included
in the module. With this data you can keep a record of the
areas of memory that were used to build the binary file. It is
a good idea to use this option with the printer just before
saving the binary file. That way you can keep a record of the
pages used. If the program doesn't fully execute try adding
more pages, or use more sensitive values in the search and
mark routines.

A. PUT FILE TO DOS BINARY

This is the final step of using this program to build a
file. In this section two important things occur. The first i.
a final error check of the stored modules. This is the second
error checking mentioned in the INITIALIZE .ection.

of
in
of
the

file
best

The purpose of this check is to stop any overwriting
the binary file by itself. You might think the error checks
ADD section did all of this. Well they did to the best
their capability at that time. The problem then was that
program had no means of knowing how large the binary
would become. Neither does the user on the first try. The
way to explain this is with another example.

EXAMPLE: The user has initialized the STORE and added two
sections. They are shown in the map below.

BINARY FILE

! $0-$8! $08-$28
Logical

!$50-$52!

$08 $10
Physical

$30 $32

The user has added the $08-$28 module and the $50-$52
module. Neither of these cause an error at this time. I am

-----,assumingRERUN is placed somewhere out of harms way. The error
happens later when the user adds the section from $AO-$C2. The

33

map below now shows the status of the binary file when it
tries to execute. The lower 8 page module relocates ok, the
next module of $08-$28 also has no problems. The problem of
overwrite occurs when the module $50-$52 attempts to relocate.
It will overwrite part of the last module which has not been
moved yet.

BINARY FILE

! $0-$8 ! $08-$28
Logical

!$50-$52! $AO-$C2

!===!
$08 $10

Physical
$30 $32 $54

no errors,
file. It

the binary

has occurred, assuming
touchups on the binary
need to use to execute
below.

This error can only be caught when the entire file has
been built. When you enter option 9 the program checks for
these errors. If found it will tell you which module and where
the overwrite occurred. The solution is to use option 9 to get
a copy of the pages you included. Then use option 1 to
re-initialize the STORE.

With the knowledge of where the problem of overwrite
occurred, you can- move the value of DEST to try and avoid
this. If you increase dest by $04 this would solve the
problem. You can't decrease it anymore because it is already
at the minimum. Another solution would be to delay including
that module as in the previous example. Use the same DEST but
this time add the module $AO-$C2 before the module $50-$52.
With so much ability to move the program start, change order
of modules ..etc there should be a solution to almost all
packing problems.

The question about an extra module only occurs in the
language card version of PACKER and is expanded in the last
section on packing.

Once the error checking
the program does the final
will display the command you
program. An example is shown

BRUN CRACK-SHOT,A$1000

large files that have a LOGEND at or
be a problem. Issue the command

BRUN command and there should be no

One note is for very
near $9AOO there might
'MAXFILES I' before the
problems.

Packer will prompt you for a file name to save the binary
file under.

The file is stored from the range of $2000 ($0800 for lc
version) --)$??OO. This is where the file resides 1n memory
as it is being built. To execute the file you use the brun
command, but you must use an address extension as shown in the
above example. The PACKER program will give you the full
command to use. If you don't want to use the address extension

34

- -~- --- -~---_._------------ ----- -- ----~~---~-~._------------

all the time the file can be changed. Instead of giving a BRUN
command you could BLOAD the CRACK-SHOT file. In the example
above you would 'SLOAD CRACK-SHOT,A$1000'. Next you would save
the file again at its p~ope~ location. This way all you need
to do to run the file is to type BRUN CRACK-SHOT. To save the
file you need the sta~ting address $1000 and the length.
PACKER gives you the length of the file at the same time that
it saves it. The length shown is the hex value. Let's say fo~
the example above the length is $40. That is $40 pages of
1ength.

You would use PACKER to build the file and then save it
to a bina~y disk. Then exit PACKER and issue the command:

SLOAD CRACK-SHOT,A$1000

Then you would give the command:

SSAVE FILENAME,A$1000,L$4000.

The length of the file goes afte~ the L$ and put two O's
afte~ the length.

The only exception to this is if the file needs to do a
maste~ relocate. The modules will be ~elocated by RERUN. A
maste~ ~elocate is when the entire binary file must be moved.
This happens when the file you built w~nts to load whe~e DOS

-~ is. You use DOS to load the file so you cant ove~write that.
The solution is to load the file in lowe~ memory and then
relocate up to higher memo~y. This is automatically done for
you. If you choose DEST such that the bina~y file will
overwrite DOS when it loads the PACKER program adjusts fo~
this. It builds the file at $2000 ($OBOO for lc version) and
modifies it to relocate to higher memory once lORded. You can
tell if the bi~ary file will do a master relocate by looking
at the LOGEND value at time of saving. If LOGEND is greate~
than $9AOO then the binary file you save will do a maste~
relocate.

The exact sequence for a master relocate is as follows.
When option A is hit PACKER checks LOGEND. If LOGENO is)$9A
then a flag is set in RERUN. Some parameters are set in RERUN
that give the desired destination of the binary file. The
binary file is always loaded in initially at $OBOO (fo~ lc) o~
$2000 for lower memory PACKER. Once in memory the first 3
bytes of the binary file jump to RERUN, and the flag in RERUN
is checked. If set RERUN relocates itself up into memory. It
can overwrite DOS at that time because it is not needed any
more. Once relocated the operation is the same, all modules
are placed and program restart occurr$. All of this action is
transparent to the user.

This takes you back to the main menu.

B. EXIT TO BASIC

35

This will exit the user to APPLESOFT.

C. RUN COMMAND FILE

This option will pack a binary file for you if a command
file 1& available for the program you have. A command file is
a short binary program containing all the information
necessary to pack a program copied by a CRACK-SHOT card. There
are several command files on the disk with the packing
program. They all start with C.name. For example the command
file for lower memory PACKER is called C.LOWPACK.

If a user has made a copy of the packing program with the
CRACK-SHOT card then he could use the command file to pack it
into a binary file. This is only for example as the packing
programs are given to you anyway unlocked. The user would run
the packing program and choose option C. On entry the program
will ask you for the command file name. Put the disk with the
command file in drive one and enter the name C.LOWPACK. The
computer will load the command file and ask you for the
CRACK-SHOT disk that contains a copy of low memory packer.
Insert that disk in drive ene and hit return. The program will
then pack that disk into a binary file in memory.

On exit the program will tell you to use opti~n A to save
the binary file. Hit A for saving. When asked for extra module
hit return. The program will ask for a OOS3.3 disk and request
a program namE'to save the file with. It will also give you
the command to use to execute the .tored binary program.

That is all there is to command file packing. If you wish
to create new command files for other programs see section 7.0
of thiSimanual.

E. EXECUTE CURRENT STORE

This will execute the current store you have built in
memory. The packer program will move it to where it would be
loaded in by DOS and then jump to the starting location. (DEST)

It is recommended that you use option A to save the store
first as using E will kill packer and your STORE. This allows
a user to build a Sitore,save it and immediately test it
without exiting to reload•••etc.

36

save
when
the

the
load
the

LANGUAGE CARD ENHANCEMENTS

Use~s with language ea~d may use the Ie ve~sion of the
PACKER p~og~am. This ve~sion has a few enhancements ove~ the
lower memo~y PACKER. The reason fo~ this is the ext~a memo~y
of the Ie allows g~eate~ expansion of the PACKER p~og~am.

1) In INITIALIZE you a~e given the option to clea~ hi~es 1 on
~e5ta~t. This is given to clean up the hi~es screen befo~e
sta~ting fo~ p~og~ams that use hi~es.

2) The Ie version allows packing of bina~y files with lengths
up to $9100 bytes. PACKER patches DOS to allow the longe~
files.

3) The main imp~ovement to the system is the addition of an
ext~a module in the language ca~d. The limit to the packing of
the bina~y file is $9100 bytes but with a new addition to the
prog~am you can now sto~e $8900 bytes.

The way this is done is with two bina~y files. One file
is the regula~ la~ge file of up to $9100 bytes. The other file
is an additional file containing one memory module of up to
$2800 bytes long. This additional module will go into the

-~ language card. The main p~og~am wl11 load into lowe~ memo~y as
usual but will also access and relocate the language card
module. Below is an example.

Say a p~ogram uses memory SO-SlFOO, $4000-$BFFF. This is
a la~ge amount of memory and not packable before. The
procedure is as follows.

Run PACKER, use aption 1 to initialize a STORE. Set
beginning as $17 and RERUN at $lF. Then use option 2 to
tracks $F-$12. With those tracks in the buffer save
logical pages $AO-$BF to the STORE. Then use option A to
the filQ. Save it with name file1. In option A hit return
asked for an extra module. The file you just saved is
extra module that will go into the language card.

Now use option 1 to Initialize the STORE. When the
program asks you to clear hires one on restart answer yes (Y).
Set the DEST as $0800 and RERUN as $2000. Now pack pages
$O-$lF and pages $40-$9F. Save the file with option A. This
time when asked for the extra memory module enter $00. The
next question will ask for the module end, enter $FO (actual
end + i), the last question will ask for the module
destination, enter $AO. The module will be loaded into the
language eard from $00 to $FO and it belongs at $AO. Save this
file as file2.

Now exit packer program and run the program EXEC FILE
BUILDER. This will build you an exec file. The exec file is
the file you execute to run the copied program. The exec file
will load the extra module into the language card and then run
the main binary file.

37

There are a few questions to answer for this exec file to
be built for you. The first is to tell it the name of the
extra module file. This is filel from the example above. The
program will load filel and strip off the RERUN program and
the automatic lower 8 pages of memory. All that is wanted in
this file is the memory module. Then enter the name of the
main binary file. This would be file2 from the example .bove.
Enter the starting address (DEST) of $0800.

Last it asks you for a name to give this exec file it
will build. To keep matters straight you might have called
filel-namehigh called file2=namelow and the exec file name

Once this is entered the program will build the exec file
for you. All three programs filel, file2 and the exec file
must be on disk to execute. You must also have a language card
to execute. To execute the program type EXEC NAME.

The language card is turned off immediately before
program execution by RERUN.

This increases the size of the binary file you c.n pack.

38

7.0 COMMAND FILE CREATE
===============~=======

There is a program called command file create on your
program disk supplied with the CRACK-SHOT card. This program
will create a command file to be used by the PACKING programs.
This file contains all the necessary data for the PACKER
pro~ram to access a CRACK-SHOT copy disk and pack it into a
binary file. Each copied program is unique and needs a command
file.

When you run command file create the program will prompt
you for the needed data. It will then store the command file
on a DOS3.3 disk.

The first question asked is for the name of the command
file. This is the name it will be stored under on a DOS disk.
Next it will ask you for DEST. This is the beginning page
address of the binary file you will pack. Enter a two digit
hex number for the page number where the binary file will
begin.

Next the progr-amrequests REDEST. This is the address of
the RERUN miniprogram in your binary file. Enter a two digit
hex number representing the page where RERUN will go.

For more information on DEST and REDEST see option on
PACKER program.

Now the program requests which screen setup to build into
the program. This is the same set of questions as on the
CRACK-SHOT card and in the PACKER program.

The next question asks how many modules there will be.
This is the number of memory modules ***excluding*** the lower
8 pages memory module. That module is always present.

The program then goes into a loop depending on the above
entered number of modules. It requests the starting and ending
page address of each module. Enter the addresses as two digit
hex rlumbers.

You would want to use this program command file create
when you have successful packed a binary file and know what
pages to pack. A good idea is to use option 9 in PACKER once
you have a file pac~ed. This option gives you DEST, REDEST,
and all modules you packed, and it gives the modules in the
correct order.

If you are building a cpmmand file from a parameter list
you will need to pay close attention to the sequence of
modules. Option 9 will give t~e correct sequence of modules to
load. The parameter lists may only list areas of memory and
not a good sequence of modules.

For instance the parameter list of a program that has
O••IA $20•.65 $90••9h cannot be entered directly into a
command file. You must use packer to find a workable sequence
of modules. In this case.•••.•

B•.IA 20..33 34.•65 90..9A

39

The Packer buffer can only hold so much at one time. Some
parameter lists may be in a good form for entry into command
file create. Look for comments on the parameter lists.

Once the last module has been entered the program
prompt for a command file disk and save the file. Any
name can be used.

will
file

When running PACKER this command file can be used to pack
any copy of that particular program.

40

card
halt
data

8.0 EXTRA USES FOR CRACK-SHOT CARD

Besides being a program copy system the CRACK-SHOT
can also be used for program analysis. The ability to
program execution at any time and have all the restart
saved for you is a nice utility.

If you wonder how a program works or where the
microprocessor is currently executing code at any time you can
use the CRACK-SHOT card. Simply boot the program you wish to
analyze. let it proceed to the point you are interested in and
make a copy at that time.

Most programs on the market these days are in assembly
language. There are some programs that are in applesoft for
sell. To find out where the APPLESOFT program is executing
look at the zero page locations storing the current line. See
the APPLESOFT manual for those locations and others.

If the program you copied is in machine language the
program counter was saved at time of copy. To see the program
counter you have two options. One is to use the EDITOR program
or the better alternative is to use the PACKER program. The
PACKER program is a better choice because it has more
utilities for analysis built in.

To see the program counter (PCl. Stack pointer (SPl. and

__~ other register data load t~ack $13 hex. From the documentation
on CRACK-SHOT operation look up the storage pattern for the
restart data. This tells you what data is saved and where. On
track $13 the 4th page is the restart data. The PC is stored
at $xxF9 and $xxFA, low byte first. Other register data is
documented.

A copy of the stack is stored as the second apge of track
$13. With this data you can follow the program execution and
find out where the code segments are for different subroutines
or other operations.

EXAMPLE:

Some programs use a s@t track for copy protection. This
traCK may not contain sector data. it could contain only a set
sequence of bytes from 1 to ?? that the program looks for. Bit
copiers have problems copying tracks like this without help
from users. Nibbles Away II has a track/bit editor for working
on a track but without knowing what sequence of bytes the
program expects the user may have a hard time. The CRACK-SHOT
card can be used to solve this problem.

Make a copy of the disk using a bit copier. Then boot the
copied disk. If the disk boots part ways but then hangs on a
given track the program may be looking for a sequence of bytes
and cant find them. This could be a synchronized copy also.
Either way the program does not like this particular track for
some reason. Well••••let·s find out why!!!

This time boot the copied diSK and right when the program
moves to the track it does not like make a copy with the

41

CRACK-SHOT card. This may necessitate removing the cover of
the disk drive to watch the disk booting a couple of times. A
good calibrated eyeball helps. Watch the read/write arm and
copy the program right when it stops on the track giving
problems.

Now you have a copy of the program as it is reading that
track. To proceed from here you must run the PACKER program.
Once in PACKER use option 2 to read in track S13. Then find
the value of the PC at time of copy. If the PC value is above
'FaOO then the program was using a monitor routine. You need
to find the SP value and locate the stack top. The top two
bytes on the stack are where the program was executing before
it called the monitor routine, unless the monitor routine
called anthoer monitor routine. Once you have the location in
lower memory where the calling routine is you want to look at
that area.

Use option 2 to load the buffer with memory from around
the above value. Then use option 3 to disassemble and analyze
the code in that area. Find out where the disk is being read.
The code will look something like below.

0000 LOA scoaa,x
0003 BPL SOOOO

This is the code to look at the disk input data latch.
After this code is either storage of the loaded data or
comparison to a set value (such as SDS). This will look
something like:

0003 BPL $0000
(IOOSCMP "$05
0007 BEQ S0020
0009 (PRINT ERROR MESSAGE AND REBOOT)

0020 (ALL OK PROCEED)

Usually the code will look for a sequence of bytes so
there may be several sets of the above code. If the loaded
data does not match then the program will usually print an
error message and reboot or crash. You have two options at
this point.

One is to use the track and bit editor of NIBBLES AWAY II
and make the track look like the program wants. The other is
to modify the code of the program. The first is easy if not
many bytes are checked, if the track contains a significant
amount of data then forget it!!!

The second is more appealing as it does away with the
protection scheme. To do that you need to modify the code as
it resides on disk. This can get mighty tricky and time
consuming. Utilities such as the INSPECTOR and Dr. WATSON come
in handy here. They allow access to the disk on sector level.
The procedure is sometimes not easy and may require a couple
of iterations. Make the copy of the program as described
above. Now what you must do is analyze the code and find out
where an error is detected. A code to look for is:

42

JMP SC600

This reboots the disk in drive 1. So any code that
executes that is error code. Some programs as mentioned above
will look for a sequence of bytes. If anyone of the bytes is
not correct it will branch to an error code area, look for
this. Also look for any code that prints 'error' or other
error indicators such as a letter in the upper left corner.
Find all entries to such code.

Once you think you have located all the error code and
entries to them you must change that code. The procedure to
try first is to put nop's (SEA) where the program branches to
that code. In other words change the program so that there is
no entry to the error code. You can change the program in
memory but that won't do you much good. What you must do is to
change the code on the copied disk. Change the disk that was
copied by the bit copiers, not the disk made by CRACK-SHOT. We
only used the CRACK-SHOT disk to find the code areas for
analysis.

Here is the fun part, sometimes it can be quick but other
times it can take some time. A printer is a definite help.
What you must do is to find out where the code you have
analyzed is stored on the bit copied disk. It could be on
almost any track. Use logic!!! If the disk booted track zero
and then checked track one for a sequence of bytes then the
code to find must have come off track zero. But•••.if the
program loaded several tracks before checking one track the
code you want to find can come off anyone or several of the
loaded tracks.

Find that code!!! Load sectors and disassemble, compare
against the code you want to find. Nibbles Away II has a nice
utility for reading a sector and then disassembling that
sector in memory. When you have a match enter your changes and
save the sector back to disk. Of course if they are using
different address markers you may have to modify DOS some.
Find a source listing of the RWTS DOS code and there are a few
bytes to change that allow different address markers to be
used. That goes into another realm of analysis.

So the basic procedure is as follows:

Make a copy of disk with bit copier
Run copy and find track it hangs on
Boot copy and make CRACK-SHOT copy when the trouble track
reached.
Analyze the code reading the track
Find all error code and entries to such

Options:
A) Make track fit
B) change code
conditions.

desired with track editor
on bit copied disk to

43

ignore all error

----_._----------------------_.----------

GOOD LUCK! !!

MULT-ACCESS PROGRAMS

One trick to obtain a working backup copy is as follows.
Make a bit copy of the disk. If that copy boots and runs then
you have a backup.

If not you may still be able to have a backup. On the
back of the bit copied disk put a CRACK-SHOT copy of the main
or only program. Boot that copy and flip the disk when it is
running. Then when it goes back to disk it goes to the bit
copied disk that won't boot. The format may have been copied
good enough to allow access by the main program.

If this doesn't work try finding the code that accesses
the disk repeatedly. Some programs only access the master disk
to check for a copy. no data is loaded. Find the code uSlng
techniques described above and branch around it. Even if ~-a
few bytes are loaded you might want to simply modify the cede
around that area to reset these bytes and then continue. ~,

44

APPENDIX A

Thenumber system everyone uses normallyis base10.The

c:omputer

usesbinarynumbers,whic:hisbase 2.Thebinary
numbers

c:anbe readeasierinbase 16whic:hi£I hex.Foran
example

ofeac:hsee below.

BASE

10
0

12 3456789101112131415
BASE

16
0

123456789OAOBoeODOEOF

In hex you use alphabet letters to c:ount onc:e you get
past 9.

BASE 10
dec:imal

09
14
24
32

BASE2 BASE 16

binary

hex

0000

1001 09
0000

1110 OE
0001

1000 18
0010

0000 20

In base 16 you c:ount up to 15 before going to a sec:ond
~ digit, 0 1•••£ F 10. In base 10 you c:ount up to 9 before going

to a sec:ond digit, 0 1•••8 9 10.
In base 10 every digit position is a power of ten.

Starting with 10 to the 0=1.

Take the number 123.

3 times10tothe0= 3
2

times10tothe1=20
1

times10tothe2-100

total=123It

isthe same withhex.every digitis a powerof16.

Take

thenumber123inhex.Troanslateto dec:imal.

3

times16tothe0..3
2

times16tothe1=32
1

times16tothe2=256

In the doc:ument all numbers prec:eded by a $ are given in
hex.

45

------------ ----- - --- ----- --~- -------_._---

---"
APPENDIX B

The tracks on a CRACK-SHOT disk contain the memory of the
APPLE at time of copy. The reference table below will show you
what pages are stored where.

Track storage all numbers in hex.

TRt< PAGES TRKPAGES

00

02-0B OB70-79
01

OC-15 OC7A-83
02

10-lF 0084-80
03

20-29 OE8E-97
04

2A-33 OF98-21
05

34-30 10A2-AB
00

3E-47 11AC-B5
07

48-51 12B6-BF
08

52-58 130,1,RESTART
09

5C-65
OA

oo-oF

47

APPENDIX C

The next few pages give examples of assembly
code listed using the APPLE disassembler. They are
as to what to look for.

49

language
commented

INTENTIONALLY LEFT BLANK

1000L

1000-

802C17 lIU.172C
1003-

203E14 .ISH.143E
1006-

10E) ICII.OUB
1008-

206C12 "III.126C
100B-

AE2217 LOX.'722
100E-

lIC51OF .IMP.OF5B Here is an example of normal progr~1011-
2058FC JlIR.FC58

1014-
A'IF LOA,.'F code. Notice no ?? •every line has

1016-

A222 LOX,.22 an assembly mnemonic on the right.1018-
20FO16 JlIR.'6FO

1011-
20El16 JlIII.16El S3 decimal bytes were used for 20

1011-

lICjCDC .IMP.0CjC lines giving roughly 100 lines of code1021-
2058FC JSI.FC58

per 256 byte page. That is $64 bytes10211- A967 LOA"67
1026-

801917 SU.1719 of code for $FF byte page. With the
10Z9-

A905 LIlA,.05
sensitivity set above $64 hex this

10ZI- 1101617 SU.1716
102£-

&920 LOA,.20 page would be marked if the res tof
10jO-

801717 lIU.'717
the page was similiar.10j3- A980 LOAIUO•

5000- 00
5001- 00
5002- 00
5003- 00
5004- 00
~005- 00
~006- 00
5007- 00
50011- 00
5009- 00
500A- 00
5001- 00
500C- 00
5000- 00
500£- 00
500F- 00
5010- 00
5011- 00
5012- 00
5013- 00•

IRII:
Bill:
IIRII:
IIRII:
IRII:
BIll:

BIll:

BIll:

BIll:
BIll:

BIll:

IRII:
BlK

BlK

BlK
IRK
BlK

BRK
11K
11K

Example of lIlellloryall zeroes. Every

line is BRK which is the assembly

mnemonic ~or 00 hex byte. Not marked.

50

60001.

6000- FF
6001- rF
6002- "
6003- rF
6004- "
6005- "
6006- "
6007- FF
6008- "
6009- Fr
6001- FF
600B- "
600C- Fr
600D- Fr
600E- rF
600'- FF
6010- Fr
6011- FF
6012- FF
6013- FF"

777
777
777
777
777
777
771
777
777
777
??7
777
777
??7
??7
777
177
77?
771
771

Example of memory all hex $FF. ~otice

the large n1.llllberof ?? meaning the

APPLE disassembler cannot decode

this section. $FF ill net a valid

opcode instruction so the disasse~bler

prinu ??

lCUI. -151

"19001.1900-

55CE EOR'CE.X
1902-

5645 l.SR'45.X
1904-

52 771
1905-

4946 EOR,.46
1907-

D90021 CMP'2100.1'Not progra.m code. Note large amount of

&901-

7010 BVSUUC repeating BVS instruction. Several190C-
70II BVSUUF

&90E-
70&0 BVSU880??? are present.If a lot of ??? are

1910-
7020 IVSU932 present then the .ection is probably&912-
7020 IV.U934

&914-
7020 IV.U936 not valid coele.Use the ASCII search

&916-
7020 IV.U938

or display to see if there are menusA918-
7060 IVSU97A

A91&-
00 BRIt or prompts here. Also several BRKare

A918-
22 111

present then code is probably not valid.A91C-
0620 ASI.120

1911-
74 177

191F-
22 771

1920-
0622 ASI.122

1922-
04 111•

51

&950L

&950-

02 777
(.c!'O,I)

&951-
01CO au

&95.$-

&090 LIlt1$90

&955-

00 IU
&956-

00 11K Not program code,Note several???
&957-

FE0001 I1C'0100.1

&95&-

00 IRK allllu.ny BRK

&951-

02 777

&95C-

00 IU

U50-

0100 au('00,1)

&95F-

07 777

&960-

00 BIIII:

&961-

0100 au('00,1)
&963-

FF 771

&9611-
7F 111

&965-

00 11K

&966-

00 IU

&967-

FF 771

&968-
7F 771

&969-

00 11K•

IDOOL

1000-

811118 STY$Ii8
BD02-

8549 ST&'49 Cood program area, 3.5 decimal bytes
IDOII-

&0 02Lot1$02
gives 20 lines of code. This comes outBD06-

'CF'06STY'06F'
1009-

&0 OilLIlt1$04 to 146 lines of code per 2.56 byte page.

IDOB-

8C F8OilSTY'0"F8
With .ensitivity .et at..t92or above this100£-

&0 01LOt1$01
1010-

11 IIILD&('II8).tpage would be marked if the rest of the

1012-

U Tn
page was s1.lll1liarto th1a.1013-

ADOF LOtnOF
1015-

01118 CliP('li8),t
1017-

FO11 IEQ$1034
1019-

U TU
101&-

1II PII&
1011-

11II' LO&('4'), t
1010-

A& Tn
1011-

68 PLA
101F-

118 PBA
1020-

91•• SU('II8).t
1022-

1081CO LO&'COU.I•

52

·'.19J1.

1.193-

206CSA JSIltauc T~icky e&~ple of good code. The~e a~e
1.$96-

.C••U JM''111••
lIany ???in here but the ~est of the1399-

206FIF J151lUHF
1.19C-

97 111 p~intout looks good.This is aro uample
1390-

OF 111
9f data passing information to a, 139£-20728C JSBUC72

13Al-
20OFU JSIl$UOf' sub~outine.The addres~ of the data

13'11-
2098IF J151lUf'9B is on the stack. Thedata passed is13&7-
f'50' SIC$OA,l

13A9-
2079U JsaU'79 not validinstruction opcodes.The

l)AC-
A901 LOA,*01 subroutine uses the data and then13o'E-
liDA90' STA$oug

1381-
lie1111111JM'$1111111 ret~ns to

tile call in« ra.utine with
13111-

206'IF JsaUF6f' an adjustment fo~ the data.1387-
£8 III

U88-
OF 111 There are 48 bytes used giving

1389-

20728C JsaUC72 108 lines of code pe~ 256 blte page.138C-
20OFSA JSIltaAOf'

138F-
206F8F JSIlUHF A"y sensitivity above $68 would mark

13C2-

A8 111 this page ••

53

..~

.}

APPENDIX D

TIPS ON COPYING AND PACKING BINARY FILES

The CRACK-SHOT ~ard will allow you to copy many different
programs for ba~kup, qui~k restart, and pa~king to binary
files. There are a ~ouple of tips for operation of the card.
We will go over some of these here.

Remember that the CRACK-SHOT ~ard will ~opy total load
programs only. This does not limit you from programs as say
the word pro~essors. You ~ould ~opy the editor program which
will let you build and edit files. You ~ould then ~opy the
printer program whi~h will access your text file for printing.
Most word pro~essors store your files in text files on normal
DOS 3.3 disks. Keep examples like this in mind.

Some programs may not boot with the CRACK-SHOT card in a
slot and enabled. The transparency switch should be set down
for programs like this. Then when the program is in memory and
exe~uting you may turn the switch up. Some programs still look
for the card while executing. It may be necessary to turn the
transparency switch up and then immediately copy the program
to stop it from finding the card. This may not work in all
cases. Some programs at certain times do nothing but look for
a funny card such as CRACK-SHOT and scan the keyboard for a
input. The procedure for these programs is to copy them when
they are executing a function such as a game or computation.
These are time intensive actions and the programs generally
are not looking at the slots at that time.

There are several ~onsiderations to keep in mind when
packing a binary file. First is the CRACK-SHOT copy itself.
You want to make the CRACK-SHOT copy at the best time for
later restart.

The largest binary file you can load in from a disk is
about $9A hex pages long. This is because you can only load
into memory not taken up by DOS. To pa~k programs that are
extremely long you may not be able to pack the HIRES page in
with the code and data. This means that when the program
starts the HIRES page is blank or full of garbage. A nice fix
for this is to ~opy the original program in the act of
'refreshing' or 'redrawing' the HIRES page. Most all programs
at some time or another will erase and redraw the HIRES page.
Each program is different but find the sequence or ~emmand
that will for~e this actien. Then right as you issue the
command hit the swit~h for ~opy. Timing is tri~ky, it might
take a ~ouple of tries.

The benefit here is that when yeu pack the binary file
yeu don't need to in~lude the HIRES page. It will be redrawn
for you by the program when it restarts.

55

APPENDIX E

PACKING EXAMPLES

Here are two examples for packing a binary file. The
second example uses the language card to store an extra
module. The first goes through the steps for packing the
program LOCKSMITH. There is a command file for this program
but we will go through the entire sequence of making a copy,
analyzing code, packing a binary copy, and creating a command
fi Ie.

The first thing you would do is to make a copy with the
CRACK-SHOT card. This gives you a copy in CRACK-SHOT format.
You could execute this copy with the CRACK-SHOT card but you
would like to put it into a binary file for easier u~e and
storage. Boot the PACKER program and put in the copy disk. Now
for a little thinking.

This program is a bit copier. It has large sections of
code for analysis and operation. It also has large buffers for
reading in data from disk for analysis and storage back out.
The buffers do not need to be copied. They ar. not necessary.
Programs that have buffers are bit copiers, communications
programs (for modems>, word processors, spelling
correctors ••••etc. You do not need to copy the buffers of
these programs, only the code. Other areas that need not be
copied are the hires pages of APPLE MEMORY for programs that
use the hires pages such as plotters. games etc••.• As
mentioned above if the user copies the program at the correct
time the hires pages need not be copied. If you did not copy a
program at the proper time then the hires pages need to be
copied because the program is executing on restart and the
hires page is full of garbage. The hires pages take up a large
block of memory and if you copy them your binary file is
growing rapidly in length. If the program you copied has a
large code and data segment you may not be able to fit in
everything. An alternative for language card users is shown
later.

For now we want to find all the code areas of the
LOCKSMITH program. The first thing to do when starting
analysis on a program is to use option 7. This will access all
the program stored on disk and do a code and ascii search and
mark. For more description of this option see the
documentation. When this option completes the computer will
show you a list of all page it considers valid program or
data. It is recommended to enter a printer address and obtain
a hardcopy of this list. With this list you will proceed to
analyze the memory and select the pages to store to a binary
fi1e. The F'ACKERprogram shows code from 0-$20 and .SO-.CO.
This is not readily evident from the list output but let's
look at it. There are several broken blocks above $SO but a
large amount of code is shown. The same can be said about the
section between $0-$20. The broken sections are simply code

57

8 to
"end
Now
end
$11
for

pages with a little different number of assembly lines than
other pages. There is code stored there. The means of finding
this out is to use options 2 and 3. Option 2 will load any
section of memory you desire into the buffer. Option 3 will
disassemble any part of memory. Use this to analyze the
buffer. Load a section of memory from tracks $C to $10. This
corresponds to the memory from $7A to $AB. Now use option 3 to
look at memory starting at logical $7FOO. You will see that as
logical $8000 is displayed valid program code is shown. From
there up to $BFOO needs to be copied. The same can be done for
lower memory.

The hardest part of a program to find and include is the
data areas. There is no valid code in these a~eas and to
disassemble them will do little good. The PACKER program will
try to detect these areas by analyzing the valid program code
found. The data areas will be accessed by the program code.
When PACKER finds a valid program code area it looks for any
10 bit indexed addressing and marks any pages found (this
addressing mode is used to access data). There are other
addressing modes that access data and the largest used is
called zero page indexed. The PACKER program cannot easily
spot this type, read an assembly manual and use option 3 for
this. PACKER will also mark any pages accessed by a JSR or
JMP, subroutine call or goto statement. Almost all code and
data areas are found. These pages are marked. This indexed
search is where stray pages will show up in the marked
display.

The best procedure to take is to obtain a worki~g packed
file and then if desired try to reduce it further by taking
out the pages not needed. Therefore pack all the pages you can
that are marked. If there are a couple of skipped pages
between 20 or 30 marked pages include them also.

For LOCKSMITH the hard code areas were packed into a
binary file. This file was executed and worked. Options 2 and
3 were used to look at the memory and a decision was made to
pack $O-$IF and $80-$BF. The procedure for packing is below.

Use option 1 to initialize the STORE. Set DEST to $08 and
REDEST to $20. Page $20 is not going to be copied so put the
RERUN program there. For the screen setup use text. page I,
all text. Do not clear the hires screen on startup. The
program will return to the menu. "

Use option 2 to read in tracks 0-4. Then use option
add to the store. Hit 8 and then $oD for start and $84 for
physical addresses. Hit option 2 and read tracks $OC-$10.
use option 8 again. Enter $oD for start and $98 for
physical addresses. Now hit option 2 and read in tracks
and $12. Use option 8 and enter $84 for start and $97
ending physical addresses. That completes the packing!

Now use option A to save the packed file to disk. When
asked for extra module (if using language card version) hit a
return, only use this in cases shown below. PACKER will prompt
for a name to store the file under. Also given is the command
to execute this stored file. ***NOTE THIS COMMAND. YOU MUST
USE THE ADDRESS EXTENSION.*** The command will be :

58

8RUN 'NAME',A$XXXX

the

other
used.
disk

inXXXX is the address to start loadingWhere the
binary file.

After you have saved your file you could type E to
execute the current STORE. This will test your packing. See
option E in PACKER documentation.

Test the file out by execution. If it works you are ready
to build A command file. Run COMMAND FILE CREATE.

The first question asked is for the name of the commAnd
file. To identify these it is recommended to use a C. prefix.
It is not necessary though.

Then the program proceeds to ask you the questions needed
to build the command file. All that is needed can come off a
hardcopy listing if you use option 9 in PACKER once you have
packed the file. Option 9 shows the values of DEST, REDEST and
all the modules in proper order of inclusion.

The create progrAm asks for these values. The only
questions are for screen setup. Remember text page 1 was
Once you have entered these parameters insert a DOS 3.3
to store the command file to.

One note••••when entering the modules exclude the lowest
module of SO-S08. This is always entered by the program.

Now you have a command file to pack the program at any
time with minimal user action.

EXTRA MODULES WITH LANGUAGE CARD

There are two command file modules given for use with a
language ~ard. These will pack a high module and low binary
program for any CRACK-SHOT copy. The procedure is as follows.

Run packer, load command file 'C.EXMOD $40-$60. Insert
your CRACK-SHOT copy disk and hit return. When packing is
finished save thi~,file under namehigh, name is anything. This
packs a high language card module containing pages $40-S5F.
When asked for extra module hit return, this ***is*** the
extra module.

Now load command file 'C.NO HIRES 1/2. This will pack all
memory except from S20-S5F. Now with the language card module
you can have all memory except S20-'3F. This is a very large
relative size file of SAO. Once the command file is loaded
insert your CRACK-SHOT copy disk and hit return. When packing
is over use option A to save the file. Now when asked for
extra module start enter SDO, this is where the module will
reside in the language card. When prompted for module end
enter 'FO, this is the end of the module +1. When prompted for
the module destination enter S40.

59

Save this Tile as namelow. Exit PACKER and run EXEC FILE
BUILDER. This program will create an exec file that will load
the extra module into the language card, then load and execute
the lower memory binary program namelow.

The Tirst question asked is for the extra module file
name, this is namehigh Trom above. The builder program will
load and shorten this file to get rid of the lower 8 pages
automatically packed. Then the builder programs asks for the
name OT the lower memory file, namelow from above. Last the
program will ask for the starting address DEST of namelow. The
command Tile used above set DEST to $08. The user can find
this out with option 9 in PACKER.

Insert a DOS 3.3 disk and the program will store the exec
Tile when you give it a name to save it under. To execute this
file you would then type from basic:

EXEC NAME

You now have a matched set of 3 files that must be
present to execute, a language card must be in the system Tor
this option to work.

The Tollowing names are
companies.

copyrighted

APPLE--APPLE COMPUTING COMPANY

D.C. HAYES MICROMODEM--HAYES MICROCOMPUTER INC.i

LOCKSMITH. THE INSPECTOR. WATSON--OMEGA MICROWAVE,INC.

NIBBLES AWAY II--COMPUTER: applications INC.

60

APPENDIX F

TROUBLE SHOOTING

When reading CRACK-SHOT disk program hangs.

Probably a bad copy. The disk read routine

cannot find valid data. If it cannot sync
in at all it will hang. Recopy.

Command file give file to long error.

When made the command file was incorrect or ••
using a command file meant for language card
packer program and currently running lower
memory packer. The mal< pack size is different.

System crash when try to copy with card.

Cannot have ROM or RAM card in system when
copy made. Also some cards use same expansion
memory a. CRACK-SHOT. Cards known are D.C. HAYES MODEM
some video cards also mapped into Same memory.

61

ERRORS DURING PACKER PROGRAM EXECUTION

DISK 110 ERROR
FUNCTION NOT DONE

An error occurred during an APPLE DOS command, such as
catalog or bsave (issued in option A). The requested command
was not performed. Either not a DOS 3.3 disk or a blown copy
of DOS 3.3.

ERROR OCCURRED, ATTEMPT TO OVERWRITE SELF.
This error happens when the user att~mpts to pack a

binary file in such a manner that a module relocates itself
over another unused module. This error can appear in either
option 8 or A, it is checked for at both places. See
documentation on options 1,8 and A for more on module
placement.

ERROR OCCURRED, ATTEMPT TO OVERWRITE RERUN.
Error happens when the user adds a memory module to the

store that at execution time will relocate itself over the
RERUN program. This is not allowed as RERUN is the master
relocate program and cannot be overwritten. Pick a page in
memory for RERUN that does not need to be copied. See options
1,8 for more information.

I/O ERROR WHEN BRUN PACKED FILE

The PACKER program assumes uses of all available memory
when the packed binary file is executed. The binary file could
extend up to $9AOO hex which is in DOS buffer area. Issue
command MAXFILES 1 if you get an 1/0 error when executing a
binary packed file.

62

0
(.oj

)

• •

,.

7400

)

74125

7430
"54321

2114

"'1'41121
A2 AI All AS A4 AS AI

II
["ABLE
SWITCH

••

+II
~
r=x=--' P. FARAD

+11

••

2716

.21110. ",,4112 I
02 III DJr AlIA! A2 A3I14A" AI A'

"
~~~~qq~~"~~M~.~.

2114

"'11141111
A2 AI AI' A3 A4 ASAI

m.
It.Io
:I:
fTl

3:
J>
'-t
•...o

)

•• AA JAAAAAAAAAA~
+s 9 0 0 0 0 0 ')tit ~ 00 3 !P! 8 & ! !~J 5 A II 011IM D 12 21 2D • " or·. " M 13 Ii • 10 •• , i 1 4 II 2 I

~oo~oo~ooooooooor~T~~~~~o.n.a~~."M».»••~~u~~e.uu.~

All resistors unless marked are Sk

V 1,0

COPYRIGHT
1982 tR.A.S.H



64



APPENDIX H

ADDITIONAL INFORMATION

It is important to **stress** a part of PACKER. When
using option A in PACKER to save the packed file the PACKER
program will show you the *exact* command to give to execute
that file. Right before you enter a name to save the file
under the program will print 'execute as BRUN NAME,A$????'

This is the command needed to execute the saved file.
What is important to include is the address extension, the
',AS????'. This tells DOS where to load and execute.

The D.C.Hayes Micromodem card has been giving problems on
CRACK-SHOT operation. The memory used by the modem card is
mapped into the same area as CRACK-SHOT and will have to be
removed when using the CRACK-SHOT card.

MODIFIED PACKER PROGRAM

~ One more version of the PACKER program is supplied on
disk. It is not in the menu and must be run seperately.

This packer is a language card version the same as in the
domumenation but with a couple of small changes. In some cases
of packing it might be advantageous to have full control of
packing. In this version the lower 8 pages are **not** packed
automatically. The user has full control of placing DEST and
REDEST. They both can have the same value now. The user must
specifically pack the lower 8 pages. They can be copied from:

S02-$07 on track 1 of CRACK-SHOT copy.
$0,1 on track $13

page $4 on track 1 is not totally valid, it was modified some
at time of copy. A complete valid copy of page 4 is on track
$13, the third page on that track. It is not normally
accessed. You cannot pack it by loading that track and moving
the third page to the STORE. For this program there is an
option * which will load the track $13 itself and put page 4
as a 1 page module in the current STORE.

This version is for more advanced packers. See the
documentation on packing program.

65



To run this version, have a language card in the system ~
and type:

EXEC EXMODPACK

There are two types of switches used on CRACK-SHOT cards.
One switch is two position, up and down. A second type switch
is three position •••up middle down. Both switches operate
exactly the same for the CRACK-SHOT system. Ignore the middle
position on the 3 position switches. Not all cards have both
types.

66



APPENDIX I

PARAMETERS FOR CRACK-SHOT PACKER PROGRAM

This is the beginning of a parameter list for CRACK-SHOT
disks. Programs will be listed by name. Each program will have
the necessary pages to copy given. Use the PACKER program to
access a CRACK-SHOT copy disk and pack the given pages.

The term LCMOD means the following module is to go into
the language card. It will be a seperate file. See enhanced
PACKER documentation for language card users.

The * after a program name means supplied by alternate
and not tested yet.

The after a program means the modules given are in
correct sequence for entering into command file create.

NOTE: The following program titles are copyrighted by software
companies.

Current date 10/9/82

NORAD ! $S••.•lA $20•••$33 $34.•••65 $90•••$9A
DEST=OS REDEST=lC

TORAX * $40.••$60 $OF.••$20

INVASION FORCE! $8••••33 $34••$40
DEST=08 REDEST=42

BUG ATTACK * '09••.$15 .40••••84

SPACE RAIDERS $20.•••84

TWERPS * $SF..•$BF $lF••••3B

APPLE PANIC * .8.•••20 '60•••$eo

FIREBIRD ! use C.NO .20 $SO

HORIZON V * $8••.•20 .90••••SF

BEER RUN * '8••$20 $60••••SF $AO••••BF

DUET! $8.•.•33 $34••••40.9D •.••BF

67

.4C••••4E



DESTzOS REDEST=42

STARSLAZER $S•••$1F $40•••$9F LCMOD .AO•••$SF

CHOPLIFTER $S•••$1E $60•••$BF

JAWBREAKER $S••$1F $60••$S3 $SE.••92 $96.•$BF

ROCKET COMMAND .S.•••40 $5E••$62

LOCKSMITH 4.1
& NIBBLES

AWAY II

$S••$1F $SO••$BF
DESTzOS REDEST=29

SENSIBLE SPELLER! $S•••$33 .34•••$3F $60•••$8D $8E••••96
DEST=1F REDEST=42

APPLE LINK! .8••••33 .98••••AO .60••••SD .SE••••96
DEST=22 REDEST-42

LASERSILK .S••••33.34 ••••3F .89••••9F .60••••6F
.70••••S3 .S4••••SS

DEST-S REDESTz42

CANNONBALL BLITZ! .S•..•1F .9S•.••BF .51.•.•79 $7A•••$S3
.S4•••$SD $SE.•••96

DEST=S REDEST=20

SEAFOX * ! .OS•.•$1F .96••••BF .SE•••$94 $59••••5F .60••••SD
DEST=S REDEST=95

SCANNER V1.6 * $OS.•••2S

DISK ORGANIZER V2.6 * .OS••••24 .30.••$31 .37••••3A $SO••.•SF
DEST=10 REDEST=25

BACK IT UP 11+ V2.4 $9F•.•$BF .SO••••SF
DEST=20 REDEST=2S

SNOGGLE ! USE C.NO $20 .50

RASTER BLASTER * $OA•••20 .40•.••SBOO

APPLE OIDS * $OS••••1F $40••••S0

VISICALC ! .OS•••$33 .34•.••65 $66.•••79 .7A••••7F
DEST-OS REDEST=SO

STAR CRUISER * $OS•••$1F $40•••$80

VISIDEX * .08•••$1F .97•••$CO .60•••61

MAGIC WINDOW * .OS•.••4S .96.•.$CO

THE ELIMINATOR! .90•••$AF .08.•••1F .40••.$6F $70..••83

68



$84••••86 DEST=08 REDEST=20

CROSSFIRE! $08•.•$33 $34•••$65 .66.•••79 $7A••••7F
DEST=OS REDEST=S8

SNACK ATTACK! $08•••$lF $9A••••9A $29•.••51 $52••••83
$84•••$80 $8E••••97 DEST=08 REDEST=20

69


	p-8.pdf
	9-20.pdf
	21-30.pdf
	31-40.pdf
	41-49.pdf
	50-60.pdf
	61-69.pdf

