Logic Symbols: 
Logic symbols represent a block of circuitry which perform a specific function. Logic symbols can be very complex, but I have listed the most basic of them. Typically, you can purchase chips which contain one or more of a gate type within a single package. You can buy discrete gates like this and route them together any way you like on a PCB. In an ever-increasing number of applications large & small, discrete logic gates are being replaced by programmable logic. With these more advanced chips, you can actually program gate circuits into a single package, thereby reducing the component count, the PCB area, the number of drilled holes, etc. and at the same time also increasing the complexity of function, the top speed, etc. Guess what else? You can also re-program them completely in-circuit meaning that if you change your logic circuit, you don't have to re-route your PCB! If this sounds fascinating to you, look up information on PAL (programmable array logic), GAL (Gate Array Logic), PLD (programmable logic device), and FPLD (field programmable logic device). 

[image: image1.png]


Nand Gate, 2 input: The output goes low only if both inputs are high. This is the most important logic function there is because literally ANY other logic function can be created with combinations of Nand gates.
[image: image2.png]


Or Gate, 2 input: The output goes low only if both inputs are low.
[image: image3.png]


Nor Gate, 2 input: The output goes high only if both inputs are low.
[image: image4.png]>



Exclusive OR Gate, 2 input: Functions like an OR gate except the output is low if both inputs are low OR high. In other words, a low output means that both inputs are the same state, whatever state that may be. The inputs must be of different states for the output to go high. I like to use the ExOr gate a a logic controlled inverter. Say you have a logic signal which at times you want to invert, and at other times, you don't want to invert it. Well, if you put that signal through an ExOr gate, you can apply your control or invert enable signal to the other input. When you lower the control input, the other signal passes through unaffected, but if you raise the control input, the other signal passes through inverted. Neat eh? I applied this idea one time in an RC car which had headlights and signal lights. I wanted the little marking lights and front signal lights to be on when the headlights were on and I also wanted them to blink when the signals were on. The problem was that the signal-flasher logic would blink the lights on but if they were already on, it would need to blink them "off". I simply applied the headlight enable signal to one input of an ExOr, and the flash signal to the other input. The ExOr output drove a transistor which drove the lights. The flash signal was in this manner inverted or not-inverted depending on the headlight status, so the marker and signal lights always blinked while signalling, no matter if their steadystate condition was on or off.

[image: image5.png]


Buffer: Simply takes in a logic level and outputs the same level. This is often done to clean up or strengthen a signal, and it is also done when an increased propagation delay is needed.
[image: image6.jpg]


 Inverter or NOT gate: Output is the opposite state of the input.
Logic, Standard

	[image: image7.jpg]



AND
	[image: image8.jpg]



OR
	[image: image9.jpg]



NOT or INVERTER
	[image: image10.jpg]



NAND
	[image: image11.jpg]



NOR

	[image: image12.jpg]



XOR
	[image: image13.jpg]



XNOR
	[image: image14.jpg]



Buffer
	[image: image15.jpg]



RS Flip Flop
	[image: image16.jpg]



JK Flip Flop

	[image: image17.jpg]



RS Flip Flop w/ Clock
	[image: image18.jpg]



D Flip Flop
	 
	 
	 


	The D Flip-Flop 


The edge-triggered D flip-flop is easily derived from its RS counterpart. The only requirement is to replace the R input with an inverted version of the S input, which thereby becomes D. This is only needed in the master latch section; the slave remains unchanged.

One essential point about the D flip-flop is that when the clock input falls to logic 0 and the outputs can change state, the Q output always takes on the state of the D input at the moment of the clock edge. This was not true of the RS and JK flip-flops. The RS master section would repeatedly change states to match the input signals while the clock line is logic 1, and the Q output would reflect whichever input most recently received an active signal. The JK master section would receive and hold an input to tell it to change state, and never change that state until the next cycle of the clock. This behavior is not possible with a D flip-flop.

The edge-triggered D NAND flip-flop is shown below.

	[image: image19.png]






[image: image21.png]






[image: image23.png]



	[image: image24.png]8| ‘
Jke
s)(

B







