
http://www.fadden.com/dl-apple2/sweet16.txt
31 October 2004

This is kind of old stuff, but I ran across the issue of Byte that had the
Apple II system description by Steve Wozniak:

00 1 Return to 6502 mode
01 2 Branch Always
02 2 Branch no Carry
03 2 Branch on Carry
04 2 Branch on Positive
05 2 Branch on Negative
06 2 Branch if equal
07 2 Branch not equal
08 2 Branch on negative 1
09 2 Branch not negative 1
0A 1 Break to Monitor
0B-0F 1 No operation
1R 3 R<-2 byte constant (load register immediate)
2R 1 ACC<-R
3R 1 ACC->R
4R 1 ACC<-@R, R<-R+1
5R 1 ACC->@R, R<-R+1
6R 1 ACC<-@R double
7R 1 ACC->@R double
8R 1 R<-R-1, ACC<-@R (pop)
9R 1 R<-R-1, ACC->@R
AR 1 ACC<-@R(pop) double
BR 1 compare ACC to R
CR 1 ACC<-ACC+R
DR 1 ACC<-ACC-R
ER 1 R<-R+1
FR 1 R<-R-1

notes
1. All braches are followed by a 1 byte relative displacement. Works
identically to 6502 branches.
2. Only ADD,SUB, and COMPARE can set carry
3. Notation:
 R = a 16 bit "Register" operand designation, one of 16 labelled 0 to 15

 (decimal), 0 to F (hexidecimal)
 ACC = register operand R0
 @R = indicrect reference, using the register R as the pointer
 <-, -> = assignment of values
4. Length of instructions: Branches are always two bytes: opcodes followed by
relative displacement. Load register immediate (1R) is three bytes: the
hexadecimal opcode 10 to 1F followed by the 2 byte literal value of a 16 bit
number. All other instructions are one byte in length.

And from that issue of Byte (Apr 1977, I think)...some words from the Woz
himself. Retyped without permission.

The Story of Sweet Sixteen
 While writing Apple BASIC, I ran into the problem of manipulating the 16 bit
pointer data and its arithmetic in an 8 bit machine.

 My solution to this problem of handling 16 bit data, notably pointers, with
an 8 bit microprocessor was to implement a non-existent 16 bit processor in
software, interpreter fashion, which I refer to as SWEET16.
 SWEET16 contains sixteen internal 16 bit registers, actually the first 32
bytes in main memory, labelled R0 through R15. R0 is defined as the
accumulator, R15 as the program counter, and R14 as a status register. R13
stores the result of all COMPARE operations for branch testing. The user
acceses SWEET16 with a subroutine call to hexadecimal address F689. Bytes
stored after the subroutine call are thereafter interpreted and executed by
SWEET16. One of SWEET16's commands returns the user back to 6502 mode, even
restoring the original register contents.
 Implemented in only 300 bytes of code, SWEET16 has a very simple instruction
set tailored to operations such as memory moves and stack manipulation. ost
opcodes are only one byte long, but since she runs approximately ten times
slower than equivalent 6502 code, SWEET16 should be employed only when code is
at a premium or execution is not. As an example of her usefulness, I have
estimated that about 1K byte could be weeded out of my 5K byte Apple-II BASIC
interpreter with no observable performance degradation by selectively applying
SWEET16. []

Article 1684 of comp.sys.apple2.programmer:
Newsgroups: comp.sys.apple2.programmer
Path:
amdahl.uts.amdahl.com!amdahl!amd!decwrl!sdd.hp.com!elroy.jpl.nasa.gov!swrinde!ih
np4.ucsd.edu!library.ucla.edu!csulb.edu!csus.edu!netcom.com!sheldon
From: sheldon@netcom.com (Sheldon Simms)
Subject: Source code (Sweet 16)
Message-ID: <sheldonCLz3qM.85r@netcom.com>
Organization: NETCOM On-line Communication Services (408 241-9760 guest)
Date: Tue, 1 Mar 1994 06:37:33 GMT
Lines: 264

Well maybe this should go to comp.sources.apple2 but it's not too long
and in my mind it's part of the thread on learning assembly language
programming. It's an opportunity to learn from Woz himself.

-Sheldon

* *
* APPLE-II PSEUDO MACHINE *
* INTERPRETER *
* *
* COPYRIGHT (C) 1977 *
* APPLE COMPUTER, INC *
* *
* ALL RIGHTS RESERVED *
* *
* S. WOZNIAK *
* *

* *
* TITLE: SWEET 16 INTERPRETER *
* *

R0L EQU $0
R0H EQU $1
R14H EQU $1D
R15L EQU $1E
R15H EQU $1F
SAVE EQU $FF4A
RESTORE EQU $FF3F

 ORG $F689

 AST 32

 JSR SAVE ;PRESERVE 6502 REG CONTENTS
 PLA
 STA R15L ;INIT SWEET16 PC
 PLA ;FROM RETURN
 STA R15H ;ADDRESS
SW16B JSR SW16C ;INTERPRET AND EXECUTE
 JMP SW16B ;ONE SWEET16 INSTR.
SW16C INC R15L
 BNE SW16D ;INCR SWEET16 PC FOR FETCH
 INC R15H
SW16D LDA >SET ;COMMON HIGH BYTE FOR ALL ROUTINES
 PHA ;PUSH ON STACK FOR RTS
 LDY $0
 LDA (R15L),Y ;FETCH INSTR
 AND $F ;MASK REG SPECIFICATION
 ASL ;DOUBLE FOR TWO BYTE REGISTERS
 TAX ;TO X REG FOR INDEXING
 LSR
 EOR (R15L),Y ;NOW HAVE OPCODE
 BEQ TOBR ;IF ZERO THEN NON-REG OP
 STX R14H ;INDICATE "PRIOR RESULT REG"
 LSR
 LSR ;OPCODE*2 TO LSB'S
 LSR
 TAY ;TO Y REG FOR INDEXING
 LDA OPTBL-2,Y ;LOW ORDER ADR BYTE
 PHA ;ONTO STACK
 RTS ;GOTO REG-OP ROUTINE
TOBR INC R15L
 BNE TOBR2 ;INCR PC
 INC R15H
TOBR2 LDA BRTBL,X ;LOW ORDER ADR BYTE
 PHA ;ONTO STACK FOR NON-REG OP
 LDA R14H ;"PRIOR RESULT REG" INDEX
 LSR ;PREPARE CARRY FOR BC, BNC.
 RTS ;GOTO NON-REG OP ROUTINE
RTNZ PLA ;POP RETURN ADDRESS
 PLA
 JSR RESTORE ;RESTORE 6502 REG CONTENTS
 JMP (R15L) ;RETURN TO 6502 CODE VIA PC
SETZ LDA (R15L),Y ;HIGH ORDER BYTE OF CONSTANT
 STA R0H,X
 DEY
 LDA (R15L),Y ;LOW ORDER BYTE OF CONSTANT
 STA R0L,X

 TYA ;Y REG CONTAINS 1
 SEC
 ADC R15L ;ADD 2 TO PC
 STA R15L
 BCC SET2
 INC R15H
SET2 RTS
OPTBL DFB SET-1 ;1X
BRTBL DFB RTN-1 ;0
 DFB LD-1 ;2X
 DFB BR-1 ;1
 DFB ST-1 ;3X
 DFB BNC-1 ;2
 DFB LDAT-1 ;4X
 DFB BC-1 ;3
 DFB STAT-1 ;5X
 DFB BP-1 ;4
 DFB LDDAT-1 ;6X
 DFB BM-1 ;5
 DFB STDAT-1 ;7X
 DFB BZ-1 ;6
 DFB POP-1 ;8X
 DFB BNZ-1 ;7
 DFB STPAT-1 ;9X
 DFB BM1-1 ;8
 DFB ADD-1 ;AX
 DFB BNM1-1 ;9
 DFB SUB-1 ;BX
 DFB BK-1 ;A
 DFB POPD-1 ;CX
 DFB RS-1 ;B
 DFB CPR-1 ;DX
 DFB BS-1 ;C
 DFB INR-1 ;EX
 DFB NUL-1 ;D
 DFB DCR-1 ;FX
 DFB NUL-1 ;E
 DFB NUL-1 ;UNUSED
 DFB NUL-1 ;F

* FOLLOWING CODE MUST BE
* CONTAINED ON A SINGLE PAGE!

SET BPL SETZ ;ALWAYS TAKEN
LD LDA R0L,X
BK EQU *-1
 STA R0L
 LDA R0H,X ;MOVE RX TO R0
 STA R0H
 RTS
ST LDA R0L
 STA R0L,X ;MOVE R0 TO RX
 LDA R0H
 STA R0H,X
 RTS
STAT LDA R0L
STAT2 STA (R0L,X) ;STORE BYTE INDIRECT

 LDY $0
STAT3 STY R14H ;INDICATE R0 IS RESULT NEG
INR INC R0L,X
 BNE INR2 ;INCR RX
 INC R0H,X
INR2 RTS
LDAT LDA (R0L,X) ;LOAD INDIRECT (RX)
 STA R0L ;TO R0
 LDY $0
 STY R0H ;ZERO HIGH ORDER R0 BYTE
 BEQ STAT3 ;ALWAYS TAKEN
POP LDY $0 ;HIGH ORDER BYTE = 0
 BEQ POP2 ;ALWAYS TAKEN
POPD JSR DCR ;DECR RX
 LDA (R0L,X) ;POP HIGH ORDER BYTE @RX
 TAY ;SAVE IN Y REG
POP2 JSR DCR ;DECR RX
 LDA (R0L,X) ;LOW ORDER BYTE
 STA R0L ;TO R0
 STY R0H
POP3 LDY $0 ;INDICATE R0 AS LAST RESULT REG
 STY R14H
 RTS
LDDAT JSR LDAT ;LOW ORDER BYTE TO R0, INCR RX
 LDA (R0L,X) ;HIGH ORDER BYTE TO R0
 STA R0H
 JMP INR ;INCR RX
STDAT JSR STAT ;STORE INDIRECT LOW ORDER
 LDA R0H ;BYTE AND INCR RX. THEN
 STA (R0L,X) ;STORE HIGH ORDER BYTE.
 JMP INR ;INCR RX AND RETURN
STPAT JSR DCR ;DECR RX
 LDA R0L
 STA (R0L,X) ;STORE R0 LOW BYTE @RX
 JMP POP3 ;INDICATE R0 AS LAST RESULT REG
DCR LDA R0L,X
 BNE DCR2 ;DECR RX
 DEC R0H,X
DCR2 DEC R0L,X
 RTS
SUB LDY $0 ;RESULT TO R0
 CPR SEC ;NOTE Y REG = 13*2 FOR CPR
 LDA R0L
 SBC R0L,X
 STA R0L,Y ;R0-RX TO RY
 LDA R0H
 SBC R0H,X
SUB2 STA R0H,Y
 TYA ;LAST RESULT REG*2
 ADC $0 ;CARRY TO LSB
 STA R14H
 RTS
ADD LDA R0L
 ADC R0L,X
 STA R0L ;R0+RX TO R0
 LDA R0H
 ADC R0H,X

 LDY $0 ;R0 FOR RESULT
 BEQ SUB2 ;FINISH ADD
BS LDA R15L ;NOTE X REG IS 12*2!
 JSR STAT2 ;PUSH LOW PC BYTE VIA R12
 LDA R15H
 JSR STAT2 ;PUSH HIGH ORDER PC BYTE
BR CLC
BNC BCS BNC2 ;NO CARRY TEST
BR1 LDA (R15L),Y ;DISPLACEMENT BYTE
 BPL BR2
 DEY
BR2 ADC R15L ;ADD TO PC
 STA R15L
 TYA
 ADC R15H
 STA R15H
BNC2 RTS
BC BCS BR
 RTS
BP ASL ;DOUBLE RESULT-REG INDEX
 TAX ;TO X REG FOR INDEXING
 LDA R0H,X ;TEST FOR PLUS
 BPL BR1 ;BRANCH IF SO
 RTS
BM ASL ;DOUBLE RESULT-REG INDEX
 TAX
 LDA R0H,X ;TEST FOR MINUS
 BMI BR1
 RTS
BZ ASL ;DOUBLE RESULT-REG INDEX
 TAX
 LDA R0L,X ;TEST FOR ZERO
 ORA R0H,X ;(BOTH BYTES)
 BEQ BR1 ;BRANCH IF SO
 RTS
BNZ ASL ;DOUBLE RESULT-REG INDEX
 TAX
 LDA R0L,X ;TEST FOR NON-ZERO
 ORA R0H,X ;(BOTH BYTES)
 BNE BR1 ;BRANCH IF SO
 RTS
BM1 ASL ;DOUBLE RESULT-REG INDEX
 TAX
 LDA R0L,X ;CHECK BOTH BYTES
 AND R0H,X ;FOR $FF (MINUS 1)
 EOR $FF
 BEQ BR1 ;BRANCH IF SO
 RTS
BNM1 ASL ;DOUBLE RESULT-REG INDEX
 TAX
 LDA R0L,X
 AND R0H,X ;CHECK BOTH BYTES FOR NO $FF
 EOR $FF
 BNE BR1 ;BRANCH IF NOT MINUS 1
NUL RTS
RS LDX $18 ;12*2 FOR R12 AS STACK POINTER
 JSR DCR ;DECR STACK POINTER

 LDA (R0L,X) ;POP HIGH RETURN ADDRESS TO PC
 STA R15H
 JSR DCR ;SAME FOR LOW ORDER BYTE
 LDA (R0L,X)
 STA R15L
 RTS
RTN JMP RTNZ
--

 W. Sheldon Simms | Newt's Friend / Jack Kemp for President
 sheldon@netcom.com | Freedom implies responsibility
-------------------------+--

Article 1685 of comp.sys.apple2.programmer:
Newsgroups: comp.sys.apple2.programmer
Path:
amdahl.uts.amdahl.com!amdahl!amd!decwrl!sdd.hp.com!elroy.jpl.nasa.gov!swrinde!ih
np4.ucsd.edu!library.ucla.edu!csulb.edu!csus.edu!netcom.com!sheldon
From: sheldon@netcom.com (Sheldon Simms)
Subject: Sweet 16 description
Message-ID: <sheldonCLz3tB.8C4@netcom.com>
Organization: NETCOM On-line Communication Services (408 241-9760 guest)
Date: Tue, 1 Mar 1994 06:39:11 GMT
Lines: 992

Well since I posted the source, here's what it does for anyone who
might not know...

-Sheldon

SWEET 16 - INTRODUCTION

by Dick Sedgewick

Sweet 16 is probably the least used and least understood seed
in the Apple][.

In exactly the same sense that Integer and Applesoft Basics
are languages, SWEET 16 is a language. Compared to the
Basics, however, it would be classed as low level with a
strong likeness to conventional 6502 Assembly language.

To use SWEET 16, you must learn the language - and to quote
"WOZ", "The opcode list is short and uncomplicated". "WOZ"
(Steve Wozniak), of course is Mr. Apple, and the creator of
SWEET 16.

SWEET 16 is ROM based in every Apple][from $F689 to $F7FC.
It has it's own set of opcodes and instruction sets, and uses
the SAVE and RESTORE routines from the Apple Monitor to
preserve the 6502 registers when in use, allowing SWEET 16 to
be used as a subroutine.

It uses the first 32 locations on zero page to set up its 16
double byte registers, and is therefore not compatible with
Applesoft Basic without some additional efforts.

The original article, "SWEET 16: The 6502 Dream Machine",
first appeared in Byte Magazine, November 1977 and later in
the original "WOZ PAK". The article is included here and
again as test material to help understand the use and
implementation of SWEET 16.

Examples of the use of SWEET 16 are found in the Programmer's
Aid #1, in the Renumber, Append, and Relocate programs. The
Programmer's Aid Operating Manual contains complete source
assembly listings, indexed on page 65.

The demonstration program is written to be introductory and
simple, consisting of three parts:

 1. Integer Basic Program
 2. Machine Language Subroutine
 3. SWEET 16 Subroutine

The task of the program will be to move data. Parameters of
the move will be entered in the Integer Basic Program.

The "CALL 768" ($300) at line 120, enters a 6502 machine
language subroutine having the single purpose of entering
SWEET 16 and subsequently returning to BASIC (addresses $300,
$301, $302, and $312 respectively). The SWEET 16 subroutine
of course performs the move, and is entered at Hex locations
$303 to $311 (see listing Number 3).

After the move, the screen will display three lines of data,
each 8 bytes long, and await entry of a new set of parameters.
The three lines of data displayed on the screen are as
follows:

 Line 1: The first 8 bytes of data starting at $800, which
 is the fixed source data to be moved (in this
 case, the string A$).

 Line 2: The first 8 bytes of data starting at the hex
 address entered as the destination of the
 move (high order byte only).

 Line 3: The first 8 bytes of data starting at $0000 (the
 first four SWEET 16 registers).

The display of 8 bytes of data was chosen to simplify the
illustration of what goes on.

Integer Basic has its own way of recording the string A$.
Because the name chosen for the string "A$" is stored in 2
bytes, a total of five housekeeping bytes precede the data
entered as A$, leaving only three additional bytes available
for display. Integer Basic also adds a housekeeping byte at

the end of a string, known as the "string terminator".

Consequently, for convenience purposes of the display, and to
see the string terminator as the 8th byte, the string data
entered via the keyboard should be limited to two characters,
and will appear as the 6th and 7th bytes. Additionally,
parameters to be entered include the number of bytes to be
moved. A useful range for this demonstration would be 1-8
inclusive, but of course 1-255 will work.

Finally, the starting address of the destination of the move
must be entered. Again, for simplicity, only the high-order
byte is entered, and the program allows a choice between
Decimal 9 and high-order byte of program pointer 1, to avoid
unnecessary problems (in this demonstration enter a decimal
number between 9 and 144 for a 48K APPLE).

The 8 bytes of data displayed starting at $00 will enable one
to observe the condition of the SWEET 16 registers after a
move has been accomplished, and thereby understand how the
SWEET 16 program works.

From the article "SWEET 16: A 6502 Dream Machine", remember
that SWEET 16 can establish 16 double byte registers starting
at $00. This means that SWEET 16 can use the first 32
addresses on zero page.

The "events" occurring in this demonstration program can be
studied in the first four SWEET 16 registers. Therefore, the
8 byte display starting at $0000 is large enough for this
purpose.

These four registers are established as R0, R1, R2, R3:

R0 $0000 & 0001 -SWEET 16 accumulator
R1 $0002 & 0003 -Source address
R2 $0004 & 0005 -Destination address
R3 $0006 & 0007 -Number of bytes to move
 .
 .
 .
R14 $001C & 001D -Prior result register
R15 $001E & 001F -SWEET 16 Program counter

Additionally, an examination of registers R14 and R15 will
extend and understanding of SWEET 16, as fully explained in
the "WOZ" text. Notice that the high order byte of R14,
(located at $1D) contains $06, and is the doubled register
specification (3X2=$06). R15, the SWEET 16 program counter
contains the address of the next operation as it did for each
step during execution of the program, which was $0312 when
execution ended and the 6502 code resumed.

To try a sample run, enter the Integer Basic program as shown
in Listing #1. Of course, REM statements can be omitted, and
line 10 is only helpful if the machine code is to be stored
on disk. Listing #2 must also be entered starting at $300.

NOTE: A 6502 disassembly does not look like listing #3, but
the SOURCEROR disassembler would create a correct disassembly.

 Enter "RUN" and hit RETURN
 Enter "12" and hit RETURN (A$ - A$ string data)
 Enter "18" and hit RETURN (high-order byte of destination)

The display should appear as follows:

 $0800-C1 40 00 10 08 B1 B2 1E (SOURCE)
 $0A00-C1 40 00 10 08 B1 B2 1E (Dest.)
 $0000-1E 00 08 08 08 0A 00 00 (SWEET 16)

NOTE: The 8 bytes stored at $0A00 are identical to the 8
bytes starting at $0800, indicating that an accurate move of 8
bytes length has been made. They are moved one byte at a
time starting with token C1 and ending with token 1E. If
moving less than 8 bytes, the data following the moved data
would be whatever existed at those locations before the move.

The bytes have the following significance:

A Token$

 C1 40 00 10 08 B1 B2 1E
 --------- ---- -------- --------- --
 | | | | | String
 VN DSP NVA DATA DATA Terminator

The SWEET 16 registers are as shown:

 low high low high low high low high
$0000 1E 00 08 08 08 0A 00 00
 ---------- ---------- ---------- ----------
 | | | |
 register register register register
 R0 R1 R2 R3
 (acc) (source) (dest) (#bytes)

The low order byte of R0, the SWEET 16 accumulator, has $1E
in it, the last byte moved (the 8th).

The low order byte of the source register R1 started as $00
and was incremented eight times, once for each byte of moved
data.

The high order byte of the destination register R2 contains
$0A, which was entered at 10 (the variable) and poked into
the SWEET 16 code. The low-order byte of R2 was incremented
exactly like R1.

Finally, register R3, the register that stores the number of
bytes to be moved, has been poked to 8 (the variable B) and
decremented eight times as each byte got moved, ending up
$0000.

By entering character strings and varying the number of bytes
to be moved, the SWEET 16 registers can be observed and the
contents predicted.

Working with this demonstration program, and study of the
text material will enable you to write SWEET 16 programs that
perform additional 16 bit manipulations. The unassigned
opcodes mentioned in the "WOZ Dream Machine" article should
present a most interesting opportunity to "play".

SWEET 16 as a language - or tool - opens a new direction to
Apple][owners without spending a dime, and it's been there
all the time.

"Apple-ites" who desire to learn machine language programming,
can use SWEET 16 as a starting point. With this text
material to use, and less opcodes to learn, a user can
quickly be effective.

Listing #1

>List
 10 PRINT "[D]BLOAD SWEET": REM CTRL D
 20 CALL - 936: DIM A $ (10)
 30 INPUT "ENTER STRING A $ " , A $
 40 INPUT "ENTER # BYTES " , B
 50 IF NOT B THEN 40 : REM AT LEAST 1
 60 POKE 778 , B : REM POKE LENGTH
 70 INPUT "ENTER DESTINATION " , A
 80 IF A > PEEK (203) - 1 THEN 70
 90 IF A < PEEK (205) + 1 THEN 70
 100 POKE 776 , A : REM POKE DESTINATION
 110 M = 8 : GOSUB 160 : REM DISPLAY
 120 CALL 768 : REM GOTO $0300
 130 M = A : GOSUB 160 : REM DISPLAY
 140 M = O : GOSUB 160 : REM DISPLAY
 150 PRINT : PRINT : GOTO 30
 160 POKE 60 , 0 : POKE 61 , M
 170 CALL -605 : RETURN : REM XAM8 IN MONITOR

Listing #2

 300:20 89 F6 11 00 08 12 00 00 13 00 00 41 52
 F3 07 FB 00 60

Listing #3

SWEET 16

 $300 20 89 F6 JSR $F689
 $303 11 00 08 SET R1 source address
 $306 12 00 00 SET R2 destination address
 A
 $309 13 00 00 SET R3 length

 B
 $30C 41 LD @R1
 $30D 52 ST @R2
 $30E F3 DCR R3
 $30F 07 BNZ $30C
 $311 00 RTN
 $312 60 RTS

Data will be poked from the Integer Basic program:

 "A" from Line 100
 "B" from Line 60

--

SWEET 16: A Pseudo 16 Bit Microprocessor

by Steve Wozniak

Description:

While writing APPLE BASIC for a 6502 microprocessor, I repeatedly
encountered a variant of MURPHY'S LAW. Briefly stated, any routine
operating on 16-bit data will require at least twice the code that
it should. Programs making extensive use of 16-bit pointers (such
as compilers, editors, and assemblers) are included in this
category. In my case, even the addition of a few double-byte
instructions to the 6502 would have only slightly alleviated the
problem. What I really needed was a 6502/RCA 1800 hybrid - an
abundance of 16-bit registers and excellent pointer capability.
My solution was to implement a non-existant (meta) 16-bit
processor in software, interpreter style, which I call SWEET 16.

SWEET 16 is based on sixteen 16-bit registers (R0-15), which are
actually 32 memory locations. R0 doubles as the SWEET 16
accumulator (ACC), R15 as the program counter (PC), and R14 as the
status register. R13 holds compare instruction results and R12 is
the subroutine return stack pointer if SWEET 16 subroutines are
used. All other SWEET 16 registers are at the user's unrestricted
disposal.

SWEET 16 instructions fall into register and non-register categories.
The register ops specify one of the sixteen registers to be used as
either a data element or a pointer to data in memory, depending
on the specific instruction. For example INR R5 uses R5 as data
and ST @R7 uses R7 as a pointer to data in memory. Except for the
SET instruction, register ops take one byte of code each. The
non-register ops are primarily 6502 style branches with the second
byte specifying a +/-127 byte displacement relative to the address
of the following instruction. Providing that the prior register op
result meets a specified branch condition, the displacement is
added to the SWEET 16 PC, effecting a branch.

SWEET 16 is intended as a 6502 enhancement package, not a stand
alone processor. A 6502 program switches to SWEET 16 mode with a
subroutine call and subsequent code is interpreted as SWEET 16
instructions. The nonregister op RTN returns the user program to
6502 mode after restoring the internal register contents
(A, X, Y, P, and S). The following example illustrates how to use
SWEET 16.

300 B9 00 02 LDA IN,Y ;get a char
303 C9 CD CMP #"M" ;"M" for move
305 D0 09 BNE NOMOVE ;No. Skip move
307 20 89 F6 JSR SW16 ;Yes, call SWEET 16
30A 41 MLOOP LD @R1 ;R1 holds source
30B 52 ST @R2 ;R2 holds dest. addr.
30C F3 DCR R3 ;Decr. length
30D 07 FB BNZ MLOOP ;Loop until done
30F 00 RTN ;Return to 6502 mode.
310 C9 C5 NOMOVE CMP #"E" ;"E" char?
312 D0 13 BEQ EXIT ;Yes, exit
314 C8 INY ;No, cont.

NOTE: Registers A, X, Y, P, and S are not disturbed by SWEET 16.

Instruction Descriptions:

The SWEET 16 opcode listing is short and uncomplicated. Excepting
relative branch displacements, hand assembly is trivial. All
register opcodes are formed by combining two Hex digits, one for the
opcode and one to specify a register. For example, opcodes 15 and
45 both specify register R5 while codes 23, 27, and 29 are all ST
ops. Most register ops are assigned in complementary pairs to
facilitate remembering them. Therefore, LD ans ST are opcodes 2N
and 3N respectively, while LD @ and ST @ are codes 4N and 5N.

Opcodes 0 to C (Hex) are assigned to the thirteen non-register ops.
Except for RTN (opcode 0), BK (0A), and RS (0B), the non register
ops are 6502 style branches. The second byte of a branch instruction
contains a +/-127 byte displacement value (in two's complement form)
relative to the address of the instruction immediately following
the branch.

If a specified branch condition is met by the prior register op
result, the displacement is added to the PC effecting a branch.
Except for the BR (Branch always) and BS (Branch to a Subroutine),
the branch opcodes are assigned in complementary pairs, rendering
them easily remembered for hand coding. For example, Branch if Plus
and Branch if Minus are opcodes 4 and 5 while Branch if Zero and
Branch if NonZero are opcodes 6 and 7.

SWEET 16 Opcode Summary:

Register OPS-

 1n SET Rn Constant (Set)
 2n LD Rn (Load)
 3n ST Rn (Store)
 4n LD @Rn (Load Indirect)
 5n ST @Rn (Store Indirect)
 6n LDD @Rn (Load Double Indirect)
 7n STD @Rn (Store Double Indirect)
 8n POP @Rn (Pop Indirect)
 9n STP @Rn (Store POP Indirect)
 An ADD Rn (Add)
 Bn SUB Rn (Sub)
 Cn POPD @Rn (Pop Double Indirect)
 Dn CPR Rn (Compare)
 En INR Rn (Increment)
 Fn DCR Rn (Decrement)

Non-register OPS-

 00 RTN (Return to 6502 mode)
 01 BR ea (Branch always)
 02 BNC ea (Branch if No Carry)
 03 BC ea (Branch if Carry)
 04 BP ea (Branch if Plus)
 05 BM ea (Branch if Minus)
 06 BZ ea (Branch if Zero)
 07 BNZ ea (Branch if NonZero)
 08 BM1 ea (Branch if Minus 1)
 09 BNM1 ea (Branch if Not Minus 1)
 0A BK (Break)
 0B RS (Return from Subroutine)
 0C BS ea (Branch to Subroutine)
 0D (Unassigned)
 0E (Unassigned)
 0F (Unassigned)

Register Instructions:

SET:

 SET Rn,Constant [1n Low High]

 The 2-byte constant is loaded into Rn (n=0 to F, Hex) and
 branch conditions set accordingly. The carry is cleared.

 EXAMPLE:

 15 34 A0 SET R5 $A034 ;R5 now contains $A034

LOAD:

 LD Rn [2n]

 The ACC (R0) is loaded from Rn and branch conditions set
 according to the data transferred. The carry is cleared and

 contents of Rn are not disturbed.

 EXAMPLE:

 15 34 A0 SET R5 $A034
 25 LD R5 ;ACC now contains $A034

STORE:

 ST Rn [3n]

 The ACC is stored into Rn and branch conditions set according
 to the data transferred. The carry is cleared and the ACC
 contents are not disturbed.

 EXAMPLE:

 25 LD R5 ;Copy the contents
 36 ST R6 ;of R5 to R6

LOAD INDIRECT:

 LD @Rn [4n]

 The low-order ACC byte is loaded from the memory location
 whose address resides in Rn and the high-order ACC byte is
 cleared. Branch conditions reflect the final ACC contents
 which will always be positive and never minus 1. The carry
 is cleared. After the transfer, Rn is incremented by 1.

 EXAMPLE

 15 34 A0 SET R5 $A034
 45 LD @R5 ;ACC is loaded from memory
 ;location $A034
 ;R5 is incr to $A035

STORE INDIRECT:

 ST @Rn [5n]

 The low-order ACC byte is stored into the memory location
 whose address resides in Rn. Branch conditions reflect the
 2-byte ACC contents. The carry is cleared. After the transfer
 Rn is incremented by 1.

 EXAMPLE:

 15 34 A0 SET R5 $A034 ;Load pointers R5, R6 with
 16 22 90 SET R6 $9022 ;$A034 and $9022
 45 LD @R5 ;Move byte from $A034 to $9022
 56 ST @R6 ;Both ptrs are incremented

LOAD DOUBLE-BYTE INDIRECT:

 LDD @Rn [6n]

 The low order ACC byte is loaded from memory location whose
 address resides in Rn, and Rn is then incremented by 1. The
 high order ACC byte is loaded from the memory location whose
 address resides in the incremented Rn, and Rn is again
 incremented by 1. Branch conditions reflect the final ACC
 contents. The carry is cleared.

 EXAMPLE:

 15 34 A0 SET R5 $A034 ;The low-order ACC byte is loaded
 65 LDD @R6 ;from $A034, high-order from
 ;$A035, R5 is incr to $A036

STORE DOUBLE-BYTE INDIRECT:

 STD @Rn [7n]

 The low-order ACC byte is stored into memory location
 whose address resides in Rn, and Rn is the incremented
 by 1. The high-order ACC byte is stored into the memory
 location whose address resides in the incremented Rn, and Rn
 is again incremented by 1. Branch conditions reflect the ACC
 contents which are not disturbed. The carry is cleared.

 EXAMPLE:

 15 34 A0 SET R5 $A034 ;Load pointers R5, R6
 16 22 90 SET R6 $9022 ;with $A034 and $9022
 65 LDD @R5 ;Move double byte from
 76 STD @R6 ;$A034-35 to $9022-23.
 ;Both pointers incremented by 2.

POP INDIRECT:

 POP @Rn [8n]

 The low-order ACC byte is loaded from the memory location
 whose address resides in Rn after Rn is decremented by 1,
 and the high order ACC byte is cleared. Branch conditions
 reflect the final 2-byte ACC contents which will always be
 positive and never minus one. The carry is cleared. Because
 Rn is decremented prior to loading the ACC, single byte
 stacks may be implemented with the ST @Rn and POP @Rn ops
 (Rn is the stack pointer).

 EXAMPLE:

 15 34 A0 SET R5 $A034 ;Init stack pointer
 10 04 00 SET R0 4 ;Load 4 into ACC
 55 ST @R5 ;Push 4 onto stack
 10 05 00 SET R0 5 ;Load 5 into ACC

 55 ST @R5 ;Push 5 onto stack
 10 06 00 SET R0 6 ;Load 6 into ACC
 55 ST @R5 ;Push 6 onto stack
 85 POP @R5 ;Pop 6 off stack into ACC
 85 POP @R5 ;Pop 5 off stack
 85 POP @R5 ;Pop 4 off stack

STORE POP INDIRECT:

 STP @Rn [9n]

 The low-order ACC byte is stored into the memory location
 whose address resides in Rn after Rn is decremented by 1.
 Branch conditions will reflect the 2-byte ACC contents which
 are not modified. STP @Rn and POP @Rn are used together to
 move data blocks beginning at the greatest address and
 working down. Additionally, single-byte stacks may be
 implemented with the STP @Rn ops.

 EXAMPLE:

 14 34 A0 SET R4 $A034 ;Init pointers
 15 22 90 SET R5 $9022
 84 POP @R4 ;Move byte from
 95 STP @R5 ;$A033 to $9021
 84 POP @R4 ;Move byte from
 95 STP @R5 ;$A032 to $9020

ADD:

 ADD Rn [An]

 The contents of Rn are added to the contents of ACC (R0),
 and the low-order 16 bits of the sum restored in ACC. the
 17th sum bit becomes the carry and the other branch
 conditions reflect the final ACC contents.

 EXAMPLE:

 10 34 76 SET R0 $7634 ;Init R0 (ACC) and R1
 11 27 42 SET R1 $4227
 A1 ADD R1 ;Add R1 (sum=B85B, C clear)
 A0 ADD R0 ;Double ACC (R0) to $70B6
 ;with carry set.

SUBTRACT:

 SUB Rn [Bn]

 The contents of Rn are subtracted from the ACC contents by
 performing a two's complement addition:

 ACC = ACC + Rn + 1

 The low order 16 bits of the subtraction are restored in the
 ACC, the 17th sum bit becomes the carry and other branch
 conditions reflect the final ACC contents. If the 16-bit
 unsigned ACC contents are greater than or equal to the 16-bit
 unsigned Rn contents, then the carry is set, otherwise it is
 cleared. Rn is not disturbed.

 EXAMPLE:

 10 34 76 SET R0 $7634 ;Init R0 (ACC)
 11 27 42 SET R1 $4227 ;and R1
 B1 SUB R1 ;subtract R1
 ;(diff=$340D with c set)
 B0 SUB R0 ;clears ACC. (R0)

POP DOUBLE-BYTE INDIRECT:

 POPD @Rn [Cn]

 Rn is decremented by 1 and the high-order ACC byte is loaded
 from the memory location whose address now resides in Rn. Rn is
 again decremented by 1 and the low-order ACC byte is loaded from
 the corresponding memory location. Branch conditions reflect the
 final ACC contents. The carry is cleared. Because Rn is
 decremented prior to loading each of the ACC halves, double-byte
 stacks may be implemented with the STD @Rn and POPD @Rn ops
 (Rn is the stack pointer).

 EXAMPLE:

 15 34 A0 SET R5 $A034 ;Init stack pointer
 10 12 AA SET R0 $AA12 ;Load $AA12 into ACC
 75 STD @R5 ;Push $AA12 onto stack
 10 34 BB SET R0 $BB34 ;Load $BB34 into ACC
 75 STD @R5 ;Push $BB34 onto stack
 C5 POPD @R5 ;Pop $BB34 off stack
 C5 POPD @R5 ;Pop $AA12 off stack

COMPARE:

 CPR Rn [Dn]

 The ACC (R0) contents are compared to Rn by performing the 16
 bit binary subtraction ACC-Rn and storing the low order 16
 difference bits in R13 for subsequent branch tests. If the 16
 bit unsigned ACC contents are greater than or equal to the 16
 bit unsigned Rn contents, then the carry is set, otherwise it
 is cleared. No other registers, including ACC and Rn, are
 disturbed.

 EXAMPLE:

 15 34 A0 SET R5 $A034 ;Pointer to memory
 16 BF A0 SET R6 $A0BF ;Limit address
 B0 LOOP1 SUB R0 ;Zero data

 75 STD @R5 ;clear 2 locations
 ;increment R5 by 2
 25 LD R5 ;Compare pointer R5
 D6 CPR R6 ;to limit R6
 02 FA BNC LOOP1 ;loop if C clear

INCREMENT:

 INR Rn [En]

 The contents of Rn are incremented by 1. The carry is cleared
 and other branch conditions reflect the incremented value.

 EXAMPLE:

 15 34 A0 SET R5 $A034 ;(Pointer)
 B0 SUB R0 ;Zero to R0
 55 ST @R5 ;Clr Location $A034
 E5 INR R5 ;Incr R5 to $A036
 55 ST @R5 ;Clrs location $A036
 ;(not $A035)

DECREMENT:

 DCR Rn [Fn]

 The contents of Rn are decremented by 1. The carry is cleared
 and other branch conditions reflect the decremented value.

 EXAMPLE: (Clear 9 bytes beginning at location A034)

 15 34 A0 SET R5 $A034 ;Init pointer
 14 09 00 SET R4 9 ;Init counter
 B0 SUB R0 ;Zero ACC
 55 LOOP2 ST @R5 ;Clear a mem byte
 F4 DCR R4 ;Decrement count
 07 FC BNZ LOOP2 ;Loop until Zero

Non-Register Instructions:

RETURN TO 6502 MODE:

 RTN 00

 Control is returned to the 6502 and program execution continues
 at the location immediately following the RTN instruction. the
 6502 registers and status conditions are restored to their
 original contents (prior to entering SWEET 16 mode).

BRANCH ALWAYS:

 BR ea [01 d]

 An effective address (ea) is calculated by adding the signed
 displacement byte (d) to the PC. The PC contains the address
 of the instruction immediately following the BR, or the address
 of the BR op plus 2. The displacement is a signed two's
 complement value from -128 to +127. Branch conditions are not
 changed.

 NOTE: The effective address calculation is identical to that
 for 6502 relative branches. The Hex add & Subtract features of
 the APPLE][monitor may be used to calculate displacements.

 d = $80 ea = PC + 2 - 128
 d = $81 ea = PC + 2 - 127

 d = $FF ea = PC + 2 - 1
 d = $00 ea = PC + 2 + 0
 d = $01 ea = PC + 2 + 1

 d = $7E ea = PC + 2 + 126
 d = $7F ea = PC + 2 + 127

 EXAMPLE:

 $300: 01 50 BR $352

BRANCH IF NO CARRY:

 BNC ea [02 d]

 A branch to the effective address is taken only is the carry is
 clear, otherwise execution resumes as normal with the next
 instruction. Branch conditions are not changed.

BRANCH IF CARRY SET:

 BC ea [03 d]

 A branch is effected only if the carry is set. Branch conditions
 are not changed.

BRANCH IF PLUS:

 BP ea [04 d]

 A branch is effected only if the prior 'result' (or most
 recently transferred dat) was positive. Branch conditions are
 not changed.

 EXAMPLE: (Clear mem from A034 to A03F)

 15 34 A0 SET R5 $A034 ;Init pointer
 14 3F A0 SET R4 $A03F ;Init limit

 B0 LOOP3 SUB R0
 55 ST @R5 ;Clear mem byte
 ;Increment R5
 24 LD R4 ;Compare limit
 D5 CPR R5 ;to pointer
 04 FA BP LOOP3 ;Loop until done

BRANCH IF MINUS:

 BM ea [05 d]

 A branch is effected only if prior 'result' was minus (negative,
 MSB = 1). Branch conditions are not changed.

BRANCH IF ZERO:

 BZ ea [06 d]

 A Branch is effected only if the prior 'result' was zero. Branch
 conditions are not changed.

BRANCH IF NONZERO

 BNZ ea [07 d]

 A branch is effected only if the priot 'result' was non-zero
 Branch conditions are not changed.

BRANCH IF MINUS ONE

 BM1 ea [08 d]

 A branch is effected only if the prior 'result' was minus one
 ($FFFF Hex). Branch conditions are not changed.

BRANCH IF NOT MINUS ONE

 BNM1 ea [09 d]

 A branch effected only if the prior 'result' was not minus 1.
 Branch conditions are not changed.

BREAK:

 BK [0A]

 A 6502 BRK (break) instruction is executed. SWEET 16 may be
 re-entered non destructively at SW16d after correcting the
 stack pointer to its value prior to executing the BRK.

RETURN FROM SWEET 16 SUBROUTINE:

 RS [0B]

 RS terminates execution of a SWEET 16 subroutine and returns to the
 SWEET 16 calling program which resumes execution (in SWEET 16 mode).
 R12, which is the SWEET 16 subroutine return stack pointer, is
 decremented twice. Branch conditions are not changed.

BRANCH TO SWEET 16 SUBROUTINE:

 BS ea [0c d]

 A branch to the effective address (PC + 2 + d) is taken and
 execution is resumed in SWEET 16 mode. The current PC is pushed
 onto a SWEET 16 subroutine return address stack whose pointer is
 R12, and R12 is incremented by 2. The carry is cleared and branch
 conditions set to indicate the current ACC contents.

 EXAMPLE: (Calling a 'memory move' subroutine to move A034-A03B
 to 3000-3007)

 15 34 A0 SET R5 $A034 ;Init pointer 1
 14 3B A0 SET R4 $A03B ;Init limit 1
 16 00 30 SET R6 $3000 ;Init pointer 2
 0C 15 BS MOVE ;Call move subroutine
 45 MOVE LD @R5 ;Move one
 56 ST @R6 ;byte
 24 LD R4
 D5 CPR R5 ;Test if done
 04 FA BP MOVE
 0B RS ;Return

Theory of Operation:

SWEET 16 execution mode begins with a subroutine call to SW16. All
6502 registers are saved at this time, to be restored when a SWEET
16 RTN instruction returns control to the 6502. If you can tolerate
indefinate 6502 register contents upon exit, approximately 30 usec
may be saved by entering at SW16 + 3. Because this might cause an
inadvertant switch from Hex to Decimal mode, it is advisable to enter
at SW16 the first time through.

After saving the 6502 registers, SWEET 16 initializes its PC (R15)
with the subroutine return address off the 6502 stack. SWEET 16's
PC points to the location preceding the next instruction to be
executed. Following the subroutine call are 1-,2-, and 3-byte
SWEET 16 instructions, stored in ascending memory like 6502
instructions. the main loop at SW16B repeatedly calls the 'execute
instruction' routine to execute it.

Subroutine SW16C increments the PC (R15) and fetches the next opcode,
which is either a register op of the form OP REG with OP between 1

and 15 or a non-register op of the form 0 OP with OP between 0 and 13.
Assuming a register op, the register specification is doubled to
account for the 3 byte SWEET 16 registers and placed in the X-reg
for indexing. Then the instruction type is determined. Register ops
place the doubled register specification in the high order byte of
R14 indicating the 'prior result register' to subsequent branch
instructions. Non-register ops treat the register specifcation
(right-hand half-byte) as their opcode, increment the SWEET 16 PC
to point at the displacement byte of branch instructions, load the
A-reg with the 'prior result register' index for branch condition
testing, and clear the Y-reg.

When is an RTS really a JSR?

Each instruction type has a corresponding subroutine. The subroutine
entry points are stored in a table which is directly indexed into by
the opcode. By assigning all the entries to a common page, only a
single byte to address need be stored per routine. The 6502 indirect
jump might have been used as follows to transfer control to the
appropriate subroutine.

 LDA #ADRH ;High-order byte.
 STA IND+1
 LDA OPTBL,X ;Low-order byte.
 STA IND
 JMP (IND)

To save code, the subroutine entry address (minus 1) is pushed onto
the stack, high-order byte first. A 6502 RTS (return from subroutine)
is used to pop the address off the stack and into the 6502 PC (after
incrementing by 1). The net result is that the desired subroutine is
reached by executing a subroutine return instruction!

Opcode Subroutines:

The register op routines make use of the 6502 'zero page indexed by X'
and 'indexed by X direct' addressing modes to access the specified
registers and indirect data. The 'result' of most register ops is left
in the specified register and can be sensed by subsequent branch
instructions, since the register specification is saved in the high-
order byte of R14. This specification is changed to indicate R0 (ACC)
for ADD and SUB instructions and R13 for the CPR (compare) instruction.

Normally the high-order R14 byte holds the 'prior result register'
index times 2 to account for the 2-byte SWEET 16 registers and the
LSB is zero. If ADD, SUB, or CPR instructions generate carries, then
this index is incremented, setting the LSB.

The SET instruction increments the PC twice, picking up data bytes in
the specified register. In accordance with 6502 convention, the
low-order data byte precedes the high-order byte.

Most SWEET 16 non-register ops are relative branches. The corresponding

subroutines determine whether or not the 'prior result' meets the
specified branch condition and if so, update the SWEET 16 PC by adding
the displacement value (-128 to +127 bytes).

The RTN op restores the 6502 register contents, pops the subroutine
return stack and jumps indirect through the SWEET 16 PC. This transfers
control to the 6502 at the instruction immediately following the
RTN instruction.

The BK op actually executes a 6502 break instruction (BRK), transferring
control to the interrupt handler.

Any number of subroutine levels may be implemented within SWEET 16 code
via the BS (Branch to Subroutine) and RS (Return from Subroutine)
instructions. The user must initialize and otherwise not disturb R12 if
the SWEET 16 subroutine capability is used since it is utilized as the
automatic return stack pointer.

Memory Allocation:

The only storage that must be allocated for SWEET 16 variables are 32
consecutive locations in page zero for the SWEET 16 registers, four
locations to save the 6502 register contents, and a few levels of the
6502 subroutine return address stack. if you don't need to preserve the
6502 register contents, delete the SAVE and RESTORE subroutines and the
corresponding subroutine calls. This will free the four page zero
locations ASAV, XSAV, YSAV, and PSAV.

User Modifications:

You may wish to add some of your own instructions to this implementation of
SWEET 16. If you use the unassigned opcodes $0E and $0F, remember that
SWEET 16 treats these as 2-byte instructions. You may wish to handle the
break instruction as a SWEET 16 call, saving two bytes of code each time
you transfer into SWEET 16 mode. Or you may wish to use the SWEET 16
BK (break) op as a 'CHAROUT' call in the interrupt handler. You can perform
absolute jumps within SWEET 16 by loading the ACC (R0) with the address
you wish to jump to (minus 1) and executing a ST R15 instruction.

--

 W. Sheldon Simms | Newt's Friend / Jack Kemp for President
 sheldon@netcom.com | Freedom implies responsibility
-------------------------+--

